Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,48 +1,48 @@
|
|
1 |
-
import string
|
2 |
-
import gradio as gr
|
3 |
-
import requests
|
4 |
-
import torch
|
5 |
-
from transformers import (
|
6 |
-
AutoConfig,
|
7 |
-
AutoModelForSequenceClassification,
|
8 |
-
AutoTokenizer,
|
9 |
-
)
|
10 |
-
|
11 |
-
custom_labels = {0: "neg", 1: "pos"}
|
12 |
-
model_dir = r'model
|
13 |
-
# model = pipeline("sentiment-analysis",model=model_dir,device=0)
|
14 |
-
# print(model("you are bad boy."))
|
15 |
-
config = AutoConfig.from_pretrained(model_dir, num_labels=2, finetuning_task="text-classification")
|
16 |
-
tokenizer = AutoTokenizer.from_pretrained(model_dir)
|
17 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_dir, config=config)
|
18 |
-
model.config.id2label = custom_labels
|
19 |
-
model.config.label2id = {v: k for k, v in custom_labels.items()}
|
20 |
-
def inference(input_text):
|
21 |
-
inputs = tokenizer.batch_encode_plus(
|
22 |
-
[input_text],
|
23 |
-
max_length=512,
|
24 |
-
pad_to_max_length=True,
|
25 |
-
truncation=True,
|
26 |
-
padding="max_length",
|
27 |
-
return_tensors="pt",
|
28 |
-
)
|
29 |
-
|
30 |
-
with torch.no_grad():
|
31 |
-
logits = model(**inputs).logits
|
32 |
-
|
33 |
-
predicted_class_id = logits.argmax().item()
|
34 |
-
output = model.config.id2label[predicted_class_id]
|
35 |
-
return output
|
36 |
-
|
37 |
-
demo = gr.Interface(
|
38 |
-
fn=inference,
|
39 |
-
inputs=gr.Textbox(label="Input Text", scale=2, container=False),
|
40 |
-
outputs=gr.Textbox(label="Output Label"),
|
41 |
-
examples = [
|
42 |
-
["My last two weather pics from the storm on August 2nd. People packed up real fast after the temp dropped and winds picked up.", 1],
|
43 |
-
["Lying Clinton sinking! Donald Trump singing: Let's Make America Great Again!", 0],
|
44 |
-
],
|
45 |
-
title="Tutorial: BERT-based Text Classificatioin",
|
46 |
-
)
|
47 |
-
|
48 |
demo.launch(debug=True)
|
|
|
1 |
+
import string
|
2 |
+
import gradio as gr
|
3 |
+
import requests
|
4 |
+
import torch
|
5 |
+
from transformers import (
|
6 |
+
AutoConfig,
|
7 |
+
AutoModelForSequenceClassification,
|
8 |
+
AutoTokenizer,
|
9 |
+
)
|
10 |
+
|
11 |
+
custom_labels = {0: "neg", 1: "pos"}
|
12 |
+
model_dir = r'model/sst-2-english'
|
13 |
+
# model = pipeline("sentiment-analysis",model=model_dir,device=0)
|
14 |
+
# print(model("you are bad boy."))
|
15 |
+
config = AutoConfig.from_pretrained(model_dir, num_labels=2, finetuning_task="text-classification")
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(model_dir)
|
17 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_dir, config=config)
|
18 |
+
model.config.id2label = custom_labels
|
19 |
+
model.config.label2id = {v: k for k, v in custom_labels.items()}
|
20 |
+
def inference(input_text):
|
21 |
+
inputs = tokenizer.batch_encode_plus(
|
22 |
+
[input_text],
|
23 |
+
max_length=512,
|
24 |
+
pad_to_max_length=True,
|
25 |
+
truncation=True,
|
26 |
+
padding="max_length",
|
27 |
+
return_tensors="pt",
|
28 |
+
)
|
29 |
+
|
30 |
+
with torch.no_grad():
|
31 |
+
logits = model(**inputs).logits
|
32 |
+
|
33 |
+
predicted_class_id = logits.argmax().item()
|
34 |
+
output = model.config.id2label[predicted_class_id]
|
35 |
+
return output
|
36 |
+
|
37 |
+
demo = gr.Interface(
|
38 |
+
fn=inference,
|
39 |
+
inputs=gr.Textbox(label="Input Text", scale=2, container=False),
|
40 |
+
outputs=gr.Textbox(label="Output Label"),
|
41 |
+
examples = [
|
42 |
+
["My last two weather pics from the storm on August 2nd. People packed up real fast after the temp dropped and winds picked up.", 1],
|
43 |
+
["Lying Clinton sinking! Donald Trump singing: Let's Make America Great Again!", 0],
|
44 |
+
],
|
45 |
+
title="Tutorial: BERT-based Text Classificatioin",
|
46 |
+
)
|
47 |
+
|
48 |
demo.launch(debug=True)
|