File size: 4,595 Bytes
cf12300
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import threading
from collections import deque
from dataclasses import dataclass
from typing import Optional

import gradio as gr
from PIL import Image

from constants import DESCRIPTION, LOGO
from gradio_examples import EXAMPLES
from model import get_pipeline
from utils import replace_background

MAX_QUEUE_SIZE = 4

pipeline = get_pipeline()


@dataclass
class GenerationState:
    prompts: deque
    generations: deque


def get_initial_state() -> GenerationState:
    return GenerationState(
        prompts=deque(maxlen=MAX_QUEUE_SIZE),
        generations=deque(maxlen=MAX_QUEUE_SIZE),
    )


def load_initial_state(request: gr.Request) -> GenerationState:
    print("Loading initial state for", request.client.host)
    print("Total number of active threads", threading.active_count())

    return get_initial_state()


async def put_to_queue(
    image: Optional[Image.Image],
    prompt: str,
    seed: int,
    strength: float,
    state: GenerationState,
):
    prompts_queue = state.prompts

    if prompt and image is not None:
        prompts_queue.append((image, prompt, seed, strength))

    return state


def inference(state: GenerationState) -> Image.Image:
    prompts_queue = state.prompts
    generations_queue = state.generations

    if len(prompts_queue) == 0:
        return state

    image, prompt, seed, strength = prompts_queue.popleft()

    original_image_size = image.size
    image = replace_background(image.resize((512, 512)))

    result = pipeline(
        prompt=prompt,
        image=image,
        strength=strength,
        seed=seed,
        guidance_scale=1,
        num_inference_steps=4,
    )

    output_image = result.images[0].resize(original_image_size)

    generations_queue.append(output_image)

    return state


def update_output_image(state: GenerationState):
    image_update = gr.update()

    generations_queue = state.generations

    if len(generations_queue) > 0:
        generated_image = generations_queue.popleft()
        image_update = gr.update(value=generated_image)

    return image_update, state


with gr.Blocks(css="style.css", title=f"Realtime Latent Consistency Model") as demo:
    generation_state = gr.State(get_initial_state())

    gr.HTML(f'<div style="width: 70px;">{LOGO}</div>')
    gr.Markdown(DESCRIPTION)
    with gr.Row(variant="default"):
        input_image = gr.Image(
            tool="color-sketch",
            source="canvas",
            label="Initial Image",
            type="pil",
            height=512,
            width=512,
            brush_radius=40.0,
        )

        output_image = gr.Image(
            label="Generated Image",
            type="pil",
            interactive=False,
            elem_id="output_image",
        )
    with gr.Row():
        with gr.Column():
            prompt_box = gr.Textbox(label="Prompt", value=EXAMPLES[0])

    with gr.Accordion(label="Advanced Options", open=False):
        with gr.Row():
            with gr.Column():
                strength = gr.Slider(
                    label="Strength",
                    minimum=0.1,
                    maximum=1.0,
                    step=0.05,
                    value=0.8,
                    info="""
                    Strength of the initial image that will be applied during inference.
                    """,
                )
            with gr.Column():
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=2**31 - 1,
                    step=1,
                    randomize=True,
                    info="""
                    Seed for the random number generator.
                    """,
                )

    demo.load(
        load_initial_state,
        outputs=[generation_state],
    )
    demo.load(
        inference,
        inputs=[generation_state],
        outputs=[generation_state],
        every=0.1,
    )
    demo.load(
        update_output_image,
        inputs=[generation_state],
        outputs=[output_image, generation_state],
        every=0.1,
    )
    for event in [input_image.change, prompt_box.change, strength.change, seed.change]:
        event(
            put_to_queue,
            [input_image, prompt_box, seed, strength, generation_state],
            [generation_state],
            show_progress=False,
            queue=True,
        )

    gr.Markdown("## Example Prompts")
    gr.Examples(examples=EXAMPLES, inputs=[prompt_box], label="Examples")


if __name__ == "__main__":
    demo.queue(concurrency_count=20, api_open=False).launch(max_threads=1024)