File size: 7,181 Bytes
2fb728d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b7cfa9
 
 
 
 
2fb728d
 
 
 
 
3b7cfa9
 
 
 
2fb728d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a3d557
2fb728d
 
2a3d557
5a5956e
2fb728d
 
 
 
 
248feb4
 
2fb728d
 
 
 
2a3d557
 
2fb728d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a5956e
 
2fb728d
 
 
 
 
 
 
 
 
 
2a3d557
2fb728d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a5956e
 
2fb728d
 
 
2a3d557
2fb728d
 
f4d3067
2fb728d
248feb4
5a5956e
272707e
2fb728d
 
 
 
 
 
 
2a3d557
 
 
 
 
 
 
2fb728d
 
 
 
 
272707e
2a3d557
2fb728d
3b7cfa9
2a3d557
2fb728d
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import spaces
import gradio as gr
from transformers import AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, LlavaForConditionalGeneration, TextIteratorStreamer
import torch
import torch.amp.autocast_mode
from PIL import Image
import torchvision.transforms.functional as TVF
from threading import Thread
from typing import Generator


MODEL_PATH = "fancyfeast/llama-joycaption-alpha-two-vqa-test-1"
TITLE = "<h1><center>JoyCaption Alpha Two - VQA Test - (2024-11-25a)</center></h1>"
DESCRIPTION = """
<div>
<p>πŸ§ͺπŸ§ͺπŸ§ͺ This an experiment to see how well JoyCaption Alpha Two can learn to answer questions about images and follow instructions.
I've only finetuned it on 600 examples, so it is **highly experimental, very weak, broken, and volatile**.  But for only training 600 examples,
I thought it was performing surprisingly well and wanted to share.</p>
<p>**This model cannot see any chat history.**</p>
<p>πŸ§πŸ’¬πŸ“Έ Unlike JoyCaption Alpha Two, you can ask this finetune questions about the image, like "What is he holding in his hand?", "Where might this be?",
and "What are they wearing?".  It can also follow instructions, like "Write me a poem about this image",
"Write a caption but don't use any ambigious language, and make sure you mention that the image is from Instagram.", and
"Output JSON with the following properties: 'skin_tone', 'hair_style', 'hair_length', 'clothing', 'background'." Remember that this was only finetuned on
600 VQA/instruction examples, so it is _very_ limited right now.  Expect it to frequently fallback to its base behavior of just writing image descriptions.
Expect accuracy to be lower.  Expect glitches.  Despite that, I've found that it will follow most queries I've tested it with, even outside its training,
with enough coaxing and re-rolling.</p>
<p>🚨🚨🚨 If the "Help improve JoyCaption" box is checked, the _text_ query you write will be logged and I _might_ use it to help improve JoyCaption.
It does not log images, user data, etc; only the text query.  I cannot see what images you send, and frankly, I don't want to.  But knowing what kinds of instructions
and queries users want JoyCaption to handle will help guide me in building JoyCaption's VQA dataset.  This dataset will be made public.  As always, the model itself is completely
public and free to use outside of this space.  And, of course, I have no control nor access to what HuggingFace, which are graciously hosting this space, collects.</p>
</div>
"""

PLACEHOLDER = """
"""



# Load model
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, use_fast=True)
assert isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer, PreTrainedTokenizerFast), f"Expected PreTrainedTokenizer, got {type(tokenizer)}"

model = LlavaForConditionalGeneration.from_pretrained(MODEL_PATH, torch_dtype="bfloat16", device_map=0)
assert isinstance(model, LlavaForConditionalGeneration), f"Expected LlavaForConditionalGeneration, got {type(model)}"


def trim_off_prompt(input_ids: list[int], eoh_id: int, eot_id: int) -> list[int]:
	# Trim off the prompt
	while True:
		try:
			i = input_ids.index(eoh_id)
		except ValueError:
			break
		
		input_ids = input_ids[i + 1:]
	
	# Trim off the end
	try:
		i = input_ids.index(eot_id)
	except ValueError:
		return input_ids
	
	return input_ids[:i]

end_of_header_id = tokenizer.convert_tokens_to_ids("<|end_header_id|>")
end_of_turn_id = tokenizer.convert_tokens_to_ids("<|eot_id|>")
assert isinstance(end_of_header_id, int) and isinstance(end_of_turn_id, int)


@spaces.GPU()
@torch.no_grad()
def chat_joycaption(message: dict, history, temperature: float, top_p: float, max_new_tokens: int, log_prompt: bool) -> Generator[str, None, None]:
	torch.cuda.empty_cache()

	chat_interface.chatbot_state

	# Prompts are always stripped in training for now
	prompt = message['text'].strip()

	# Load image
	if "files" not in message or len(message["files"]) != 1:
		yield "ERROR: This model requires exactly one image as input."
		return
	
	image = Image.open(message["files"][0])
	
	# Log the prompt
	if log_prompt:
		print(f"Prompt: {prompt}")

	# Preprocess image
	# NOTE: I found the default processor for so400M to have worse results than just using PIL directly
	if image.size != (384, 384):
		image = image.resize((384, 384), Image.LANCZOS)
	image = image.convert("RGB")
	pixel_values = TVF.pil_to_tensor(image)

	convo = [
		{
			"role": "system",
			"content": "You are a helpful image captioner.",
		},
		{
			"role": "user",
			"content": prompt,
		},
	]

	# Format the conversation
	convo_string = tokenizer.apply_chat_template(convo, tokenize = False, add_generation_prompt = True)
	assert isinstance(convo_string, str)

	# Tokenize the conversation
	convo_tokens = tokenizer.encode(convo_string, add_special_tokens=False, truncation=False)

	# Repeat the image tokens
	input_tokens = []
	for token in convo_tokens:
		if token == model.config.image_token_index:
			input_tokens.extend([model.config.image_token_index] * model.config.image_seq_length)
		else:
			input_tokens.append(token)
	
	input_ids = torch.tensor(input_tokens, dtype=torch.long)
	attention_mask = torch.ones_like(input_ids)

	# Move to GPU
	input_ids = input_ids.unsqueeze(0).to("cuda")
	attention_mask = attention_mask.unsqueeze(0).to("cuda")
	pixel_values = pixel_values.unsqueeze(0).to("cuda")

	# Normalize the image
	pixel_values = pixel_values / 255.0
	pixel_values = TVF.normalize(pixel_values, [0.5], [0.5])
	pixel_values = pixel_values.to(torch.bfloat16)

	streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)

	generate_kwargs = dict(
		input_ids=input_ids,
		pixel_values=pixel_values,
		attention_mask=attention_mask,
		max_new_tokens=max_new_tokens,
		do_sample=True,
		suppress_tokens=None,
		use_cache=True,
		temperature=temperature,
		top_k=None,
		top_p=top_p,
		streamer=streamer,
	)

	if temperature == 0:
		generate_kwargs["do_sample"] = False
	
	t = Thread(target=model.generate, kwargs=generate_kwargs)
	t.start()

	outputs = []
	for text in streamer:
		outputs.append(text)
		yield "".join(outputs)


chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface', type="messages")
textbox = gr.MultimodalTextbox(file_types=["image"], file_count="single")

with gr.Blocks() as demo:
	gr.HTML(TITLE)
	chat_interface = gr.ChatInterface(
		fn=chat_joycaption,
		chatbot=chatbot,
		type="messages",
		fill_height=True,
		multimodal=True,
		textbox=textbox,
		additional_inputs_accordion=gr.Accordion(label="βš™οΈ Parameters", open=True, render=False),
		additional_inputs=[
			gr.Slider(minimum=0,
						maximum=1, 
						step=0.1,
						value=0.6, 
						label="Temperature", 
						render=False),
			gr.Slider(minimum=0,
			 			maximum=1,
						step=0.05,
						value=0.9,
						label="Top p",
						render=False),
			gr.Slider(minimum=8, 
						maximum=4096,
						step=1,
						value=1024, 
						label="Max new tokens", 
						render=False ),
			gr.Checkbox(label="Help improve JoyCaption by logging your text query", value=True, render=False),
		],
    )
	gr.Markdown(DESCRIPTION)


if __name__ == "__main__":
    demo.launch()