Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,181 Bytes
2fb728d 3b7cfa9 2fb728d 3b7cfa9 2fb728d 2a3d557 2fb728d 2a3d557 5a5956e 2fb728d 248feb4 2fb728d 2a3d557 2fb728d 5a5956e 2fb728d 2a3d557 2fb728d 5a5956e 2fb728d 2a3d557 2fb728d f4d3067 2fb728d 248feb4 5a5956e 272707e 2fb728d 2a3d557 2fb728d 272707e 2a3d557 2fb728d 3b7cfa9 2a3d557 2fb728d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import spaces
import gradio as gr
from transformers import AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, LlavaForConditionalGeneration, TextIteratorStreamer
import torch
import torch.amp.autocast_mode
from PIL import Image
import torchvision.transforms.functional as TVF
from threading import Thread
from typing import Generator
MODEL_PATH = "fancyfeast/llama-joycaption-alpha-two-vqa-test-1"
TITLE = "<h1><center>JoyCaption Alpha Two - VQA Test - (2024-11-25a)</center></h1>"
DESCRIPTION = """
<div>
<p>π§ͺπ§ͺπ§ͺ This an experiment to see how well JoyCaption Alpha Two can learn to answer questions about images and follow instructions.
I've only finetuned it on 600 examples, so it is **highly experimental, very weak, broken, and volatile**. But for only training 600 examples,
I thought it was performing surprisingly well and wanted to share.</p>
<p>**This model cannot see any chat history.**</p>
<p>π§π¬πΈ Unlike JoyCaption Alpha Two, you can ask this finetune questions about the image, like "What is he holding in his hand?", "Where might this be?",
and "What are they wearing?". It can also follow instructions, like "Write me a poem about this image",
"Write a caption but don't use any ambigious language, and make sure you mention that the image is from Instagram.", and
"Output JSON with the following properties: 'skin_tone', 'hair_style', 'hair_length', 'clothing', 'background'." Remember that this was only finetuned on
600 VQA/instruction examples, so it is _very_ limited right now. Expect it to frequently fallback to its base behavior of just writing image descriptions.
Expect accuracy to be lower. Expect glitches. Despite that, I've found that it will follow most queries I've tested it with, even outside its training,
with enough coaxing and re-rolling.</p>
<p>π¨π¨π¨ If the "Help improve JoyCaption" box is checked, the _text_ query you write will be logged and I _might_ use it to help improve JoyCaption.
It does not log images, user data, etc; only the text query. I cannot see what images you send, and frankly, I don't want to. But knowing what kinds of instructions
and queries users want JoyCaption to handle will help guide me in building JoyCaption's VQA dataset. This dataset will be made public. As always, the model itself is completely
public and free to use outside of this space. And, of course, I have no control nor access to what HuggingFace, which are graciously hosting this space, collects.</p>
</div>
"""
PLACEHOLDER = """
"""
# Load model
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, use_fast=True)
assert isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer, PreTrainedTokenizerFast), f"Expected PreTrainedTokenizer, got {type(tokenizer)}"
model = LlavaForConditionalGeneration.from_pretrained(MODEL_PATH, torch_dtype="bfloat16", device_map=0)
assert isinstance(model, LlavaForConditionalGeneration), f"Expected LlavaForConditionalGeneration, got {type(model)}"
def trim_off_prompt(input_ids: list[int], eoh_id: int, eot_id: int) -> list[int]:
# Trim off the prompt
while True:
try:
i = input_ids.index(eoh_id)
except ValueError:
break
input_ids = input_ids[i + 1:]
# Trim off the end
try:
i = input_ids.index(eot_id)
except ValueError:
return input_ids
return input_ids[:i]
end_of_header_id = tokenizer.convert_tokens_to_ids("<|end_header_id|>")
end_of_turn_id = tokenizer.convert_tokens_to_ids("<|eot_id|>")
assert isinstance(end_of_header_id, int) and isinstance(end_of_turn_id, int)
@spaces.GPU()
@torch.no_grad()
def chat_joycaption(message: dict, history, temperature: float, top_p: float, max_new_tokens: int, log_prompt: bool) -> Generator[str, None, None]:
torch.cuda.empty_cache()
chat_interface.chatbot_state
# Prompts are always stripped in training for now
prompt = message['text'].strip()
# Load image
if "files" not in message or len(message["files"]) != 1:
yield "ERROR: This model requires exactly one image as input."
return
image = Image.open(message["files"][0])
# Log the prompt
if log_prompt:
print(f"Prompt: {prompt}")
# Preprocess image
# NOTE: I found the default processor for so400M to have worse results than just using PIL directly
if image.size != (384, 384):
image = image.resize((384, 384), Image.LANCZOS)
image = image.convert("RGB")
pixel_values = TVF.pil_to_tensor(image)
convo = [
{
"role": "system",
"content": "You are a helpful image captioner.",
},
{
"role": "user",
"content": prompt,
},
]
# Format the conversation
convo_string = tokenizer.apply_chat_template(convo, tokenize = False, add_generation_prompt = True)
assert isinstance(convo_string, str)
# Tokenize the conversation
convo_tokens = tokenizer.encode(convo_string, add_special_tokens=False, truncation=False)
# Repeat the image tokens
input_tokens = []
for token in convo_tokens:
if token == model.config.image_token_index:
input_tokens.extend([model.config.image_token_index] * model.config.image_seq_length)
else:
input_tokens.append(token)
input_ids = torch.tensor(input_tokens, dtype=torch.long)
attention_mask = torch.ones_like(input_ids)
# Move to GPU
input_ids = input_ids.unsqueeze(0).to("cuda")
attention_mask = attention_mask.unsqueeze(0).to("cuda")
pixel_values = pixel_values.unsqueeze(0).to("cuda")
# Normalize the image
pixel_values = pixel_values / 255.0
pixel_values = TVF.normalize(pixel_values, [0.5], [0.5])
pixel_values = pixel_values.to(torch.bfloat16)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
pixel_values=pixel_values,
attention_mask=attention_mask,
max_new_tokens=max_new_tokens,
do_sample=True,
suppress_tokens=None,
use_cache=True,
temperature=temperature,
top_k=None,
top_p=top_p,
streamer=streamer,
)
if temperature == 0:
generate_kwargs["do_sample"] = False
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface', type="messages")
textbox = gr.MultimodalTextbox(file_types=["image"], file_count="single")
with gr.Blocks() as demo:
gr.HTML(TITLE)
chat_interface = gr.ChatInterface(
fn=chat_joycaption,
chatbot=chatbot,
type="messages",
fill_height=True,
multimodal=True,
textbox=textbox,
additional_inputs_accordion=gr.Accordion(label="βοΈ Parameters", open=True, render=False),
additional_inputs=[
gr.Slider(minimum=0,
maximum=1,
step=0.1,
value=0.6,
label="Temperature",
render=False),
gr.Slider(minimum=0,
maximum=1,
step=0.05,
value=0.9,
label="Top p",
render=False),
gr.Slider(minimum=8,
maximum=4096,
step=1,
value=1024,
label="Max new tokens",
render=False ),
gr.Checkbox(label="Help improve JoyCaption by logging your text query", value=True, render=False),
],
)
gr.Markdown(DESCRIPTION)
if __name__ == "__main__":
demo.launch() |