File size: 6,762 Bytes
4de32eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import os, sys, torch, warnings, pdb

warnings.filterwarnings("ignore")
import librosa
import importlib
import numpy as np
import hashlib, math
from tqdm import tqdm
from uvr5_pack.lib_v5 import spec_utils
from uvr5_pack.utils import _get_name_params, inference
from uvr5_pack.lib_v5.model_param_init import ModelParameters
from scipy.io import wavfile


class _audio_pre_:
    def __init__(self, agg, model_path, device, is_half):
        self.model_path = model_path
        self.device = device
        self.data = {
            # Processing Options
            "postprocess": False,
            "tta": False,
            # Constants
            "window_size": 512,
            "agg": agg,
            "high_end_process": "mirroring",
        }
        nn_arch_sizes = [
            31191,  # default
            33966,
            61968,
            123821,
            123812,
            537238,  # custom
        ]
        self.nn_architecture = list("{}KB".format(s) for s in nn_arch_sizes)
        model_size = math.ceil(os.stat(model_path).st_size / 1024)
        nn_architecture = "{}KB".format(
            min(nn_arch_sizes, key=lambda x: abs(x - model_size))
        )
        nets = importlib.import_module(
            "uvr5_pack.lib_v5.nets"
            + f"_{nn_architecture}".replace("_{}KB".format(nn_arch_sizes[0]), ""),
            package=None,
        )
        model_hash = hashlib.md5(open(model_path, "rb").read()).hexdigest()
        param_name, model_params_d = _get_name_params(model_path, model_hash)

        mp = ModelParameters(model_params_d)
        model = nets.CascadedASPPNet(mp.param["bins"] * 2)
        cpk = torch.load(model_path, map_location="cpu")
        model.load_state_dict(cpk)
        model.eval()
        if is_half:
            model = model.half().to(device)
        else:
            model = model.to(device)

        self.mp = mp
        self.model = model

    def _path_audio_(self, music_file, ins_root=None, vocal_root=None):
        if ins_root is None and vocal_root is None:
            return "No save root."
        name = os.path.basename(music_file)
        if ins_root is not None:
            os.makedirs(ins_root, exist_ok=True)
        if vocal_root is not None:
            os.makedirs(vocal_root, exist_ok=True)
        X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {}
        bands_n = len(self.mp.param["band"])
        # print(bands_n)
        for d in range(bands_n, 0, -1):
            bp = self.mp.param["band"][d]
            if d == bands_n:  # high-end band
                (
                    X_wave[d],
                    _,
                ) = librosa.core.load(  # 理论上librosa读取可能对某些音频有bug,应该上ffmpeg读取,但是太麻烦了弃坑
                    music_file,
                    bp["sr"],
                    False,
                    dtype=np.float32,
                    res_type=bp["res_type"],
                )
                if X_wave[d].ndim == 1:
                    X_wave[d] = np.asfortranarray([X_wave[d], X_wave[d]])
            else:  # lower bands
                X_wave[d] = librosa.core.resample(
                    X_wave[d + 1],
                    self.mp.param["band"][d + 1]["sr"],
                    bp["sr"],
                    res_type=bp["res_type"],
                )
            # Stft of wave source
            X_spec_s[d] = spec_utils.wave_to_spectrogram_mt(
                X_wave[d],
                bp["hl"],
                bp["n_fft"],
                self.mp.param["mid_side"],
                self.mp.param["mid_side_b2"],
                self.mp.param["reverse"],
            )
            # pdb.set_trace()
            if d == bands_n and self.data["high_end_process"] != "none":
                input_high_end_h = (bp["n_fft"] // 2 - bp["crop_stop"]) + (
                    self.mp.param["pre_filter_stop"] - self.mp.param["pre_filter_start"]
                )
                input_high_end = X_spec_s[d][
                    :, bp["n_fft"] // 2 - input_high_end_h : bp["n_fft"] // 2, :
                ]

        X_spec_m = spec_utils.combine_spectrograms(X_spec_s, self.mp)
        aggresive_set = float(self.data["agg"] / 100)
        aggressiveness = {
            "value": aggresive_set,
            "split_bin": self.mp.param["band"][1]["crop_stop"],
        }
        with torch.no_grad():
            pred, X_mag, X_phase = inference(
                X_spec_m, self.device, self.model, aggressiveness, self.data
            )
        # Postprocess
        if self.data["postprocess"]:
            pred_inv = np.clip(X_mag - pred, 0, np.inf)
            pred = spec_utils.mask_silence(pred, pred_inv)
        y_spec_m = pred * X_phase
        v_spec_m = X_spec_m - y_spec_m

        if ins_root is not None:
            if self.data["high_end_process"].startswith("mirroring"):
                input_high_end_ = spec_utils.mirroring(
                    self.data["high_end_process"], y_spec_m, input_high_end, self.mp
                )
                wav_instrument = spec_utils.cmb_spectrogram_to_wave(
                    y_spec_m, self.mp, input_high_end_h, input_high_end_
                )
            else:
                wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp)
            print("%s instruments done" % name)
            wavfile.write(
                os.path.join(
                    ins_root, "instrument_{}_{}.wav".format(name, self.data["agg"])
                ),
                self.mp.param["sr"],
                (np.array(wav_instrument) * 32768).astype("int16"),
            )  #
        if vocal_root is not None:
            if self.data["high_end_process"].startswith("mirroring"):
                input_high_end_ = spec_utils.mirroring(
                    self.data["high_end_process"], v_spec_m, input_high_end, self.mp
                )
                wav_vocals = spec_utils.cmb_spectrogram_to_wave(
                    v_spec_m, self.mp, input_high_end_h, input_high_end_
                )
            else:
                wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp)
            print("%s vocals done" % name)
            wavfile.write(
                os.path.join(
                    vocal_root, "vocal_{}_{}.wav".format(name, self.data["agg"])
                ),
                self.mp.param["sr"],
                (np.array(wav_vocals) * 32768).astype("int16"),
            )


if __name__ == "__main__":
    device = "cuda"
    is_half = True
    model_path = "uvr5_weights/2_HP-UVR.pth"
    pre_fun = _audio_pre_(model_path=model_path, device=device, is_half=True)
    audio_path = "神女劈观.aac"
    save_path = "opt"
    pre_fun._path_audio_(audio_path, save_path, save_path)