Spaces:
Running
Running
import os, sys, traceback | |
# device=sys.argv[1] | |
n_part = int(sys.argv[2]) | |
i_part = int(sys.argv[3]) | |
if len(sys.argv) == 5: | |
exp_dir = sys.argv[4] | |
version = sys.argv[5] | |
else: | |
i_gpu = sys.argv[4] | |
exp_dir = sys.argv[5] | |
os.environ["CUDA_VISIBLE_DEVICES"] = str(i_gpu) | |
version = sys.argv[6] | |
import torch | |
import torch.nn.functional as F | |
import soundfile as sf | |
import numpy as np | |
from fairseq import checkpoint_utils | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
if torch.cuda.is_available(): | |
device = "cuda" | |
elif torch.backends.mps.is_available(): | |
device = "mps" | |
else: | |
device = "cpu" | |
f = open("%s/extract_f0_feature.log" % exp_dir, "a+") | |
def printt(strr): | |
print(strr) | |
f.write("%s\n" % strr) | |
f.flush() | |
printt(sys.argv) | |
model_path = "hubert_base.pt" | |
printt(exp_dir) | |
wavPath = "%s/1_16k_wavs" % exp_dir | |
outPath = ( | |
"%s/3_feature256" % exp_dir if version == "v1" else "%s/3_feature768" % exp_dir | |
) | |
os.makedirs(outPath, exist_ok=True) | |
# wave must be 16k, hop_size=320 | |
def readwave(wav_path, normalize=False): | |
wav, sr = sf.read(wav_path) | |
assert sr == 16000 | |
feats = torch.from_numpy(wav).float() | |
if feats.dim() == 2: # double channels | |
feats = feats.mean(-1) | |
assert feats.dim() == 1, feats.dim() | |
if normalize: | |
with torch.no_grad(): | |
feats = F.layer_norm(feats, feats.shape) | |
feats = feats.view(1, -1) | |
return feats | |
# HuBERT model | |
printt("load model(s) from {}".format(model_path)) | |
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task( | |
[model_path], | |
suffix="", | |
) | |
model = models[0] | |
model = model.to(device) | |
printt("move model to %s" % device) | |
if device not in ["mps", "cpu"]: | |
model = model.half() | |
model.eval() | |
todo = sorted(list(os.listdir(wavPath)))[i_part::n_part] | |
n = max(1, len(todo) // 10) # ζε€ζε°εζ‘ | |
if len(todo) == 0: | |
printt("no-feature-todo") | |
else: | |
printt("all-feature-%s" % len(todo)) | |
for idx, file in enumerate(todo): | |
try: | |
if file.endswith(".wav"): | |
wav_path = "%s/%s" % (wavPath, file) | |
out_path = "%s/%s" % (outPath, file.replace("wav", "npy")) | |
if os.path.exists(out_path): | |
continue | |
feats = readwave(wav_path, normalize=saved_cfg.task.normalize) | |
padding_mask = torch.BoolTensor(feats.shape).fill_(False) | |
inputs = { | |
"source": feats.half().to(device) | |
if device not in ["mps", "cpu"] | |
else feats.to(device), | |
"padding_mask": padding_mask.to(device), | |
"output_layer": 9 if version == "v1" else 12, # layer 9 | |
} | |
with torch.no_grad(): | |
logits = model.extract_features(**inputs) | |
feats = ( | |
model.final_proj(logits[0]) if version == "v1" else logits[0] | |
) | |
feats = feats.squeeze(0).float().cpu().numpy() | |
if np.isnan(feats).sum() == 0: | |
np.save(out_path, feats, allow_pickle=False) | |
else: | |
printt("%s-contains nan" % file) | |
if idx % n == 0: | |
printt("now-%s,all-%s,%s,%s" % (len(todo), idx, file, feats.shape)) | |
except: | |
printt(traceback.format_exc()) | |
printt("all-feature-done") | |