import os, traceback import glob import sys import argparse import logging import json import subprocess import numpy as np from scipy.io.wavfile import read import torch MATPLOTLIB_FLAG = False logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) logger = logging def load_checkpoint_d(checkpoint_path, combd, sbd, optimizer=None, load_opt=1): assert os.path.isfile(checkpoint_path) checkpoint_dict = torch.load(checkpoint_path, map_location="cpu") ################## def go(model, bkey): saved_state_dict = checkpoint_dict[bkey] if hasattr(model, "module"): state_dict = model.module.state_dict() else: state_dict = model.state_dict() new_state_dict = {} for k, v in state_dict.items(): # 模型需要的shape try: new_state_dict[k] = saved_state_dict[k] if saved_state_dict[k].shape != state_dict[k].shape: print( "shape-%s-mismatch|need-%s|get-%s" % (k, state_dict[k].shape, saved_state_dict[k].shape) ) # raise KeyError except: # logger.info(traceback.format_exc()) logger.info("%s is not in the checkpoint" % k) # pretrain缺失的 new_state_dict[k] = v # 模型自带的随机值 if hasattr(model, "module"): model.module.load_state_dict(new_state_dict, strict=False) else: model.load_state_dict(new_state_dict, strict=False) go(combd, "combd") go(sbd, "sbd") ############# logger.info("Loaded model weights") iteration = checkpoint_dict["iteration"] learning_rate = checkpoint_dict["learning_rate"] if ( optimizer is not None and load_opt == 1 ): ###加载不了,如果是空的的话,重新初始化,可能还会影响lr时间表的更新,因此在train文件最外围catch # try: optimizer.load_state_dict(checkpoint_dict["optimizer"]) # except: # traceback.print_exc() logger.info("Loaded checkpoint '{}' (epoch {})".format(checkpoint_path, iteration)) return model, optimizer, learning_rate, iteration # def load_checkpoint(checkpoint_path, model, optimizer=None): # assert os.path.isfile(checkpoint_path) # checkpoint_dict = torch.load(checkpoint_path, map_location='cpu') # iteration = checkpoint_dict['iteration'] # learning_rate = checkpoint_dict['learning_rate'] # if optimizer is not None: # optimizer.load_state_dict(checkpoint_dict['optimizer']) # # print(1111) # saved_state_dict = checkpoint_dict['model'] # # print(1111) # # if hasattr(model, 'module'): # state_dict = model.module.state_dict() # else: # state_dict = model.state_dict() # new_state_dict= {} # for k, v in state_dict.items(): # try: # new_state_dict[k] = saved_state_dict[k] # except: # logger.info("%s is not in the checkpoint" % k) # new_state_dict[k] = v # if hasattr(model, 'module'): # model.module.load_state_dict(new_state_dict) # else: # model.load_state_dict(new_state_dict) # logger.info("Loaded checkpoint '{}' (epoch {})" .format( # checkpoint_path, iteration)) # return model, optimizer, learning_rate, iteration def load_checkpoint(checkpoint_path, model, optimizer=None, load_opt=1): assert os.path.isfile(checkpoint_path) checkpoint_dict = torch.load(checkpoint_path, map_location="cpu") saved_state_dict = checkpoint_dict["model"] if hasattr(model, "module"): state_dict = model.module.state_dict() else: state_dict = model.state_dict() new_state_dict = {} for k, v in state_dict.items(): # 模型需要的shape try: new_state_dict[k] = saved_state_dict[k] if saved_state_dict[k].shape != state_dict[k].shape: print( "shape-%s-mismatch|need-%s|get-%s" % (k, state_dict[k].shape, saved_state_dict[k].shape) ) # raise KeyError except: # logger.info(traceback.format_exc()) logger.info("%s is not in the checkpoint" % k) # pretrain缺失的 new_state_dict[k] = v # 模型自带的随机值 if hasattr(model, "module"): model.module.load_state_dict(new_state_dict, strict=False) else: model.load_state_dict(new_state_dict, strict=False) logger.info("Loaded model weights") iteration = checkpoint_dict["iteration"] learning_rate = checkpoint_dict["learning_rate"] if ( optimizer is not None and load_opt == 1 ): ###加载不了,如果是空的的话,重新初始化,可能还会影响lr时间表的更新,因此在train文件最外围catch # try: optimizer.load_state_dict(checkpoint_dict["optimizer"]) # except: # traceback.print_exc() logger.info("Loaded checkpoint '{}' (epoch {})".format(checkpoint_path, iteration)) return model, optimizer, learning_rate, iteration def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path): logger.info( "Saving model and optimizer state at epoch {} to {}".format( iteration, checkpoint_path ) ) if hasattr(model, "module"): state_dict = model.module.state_dict() else: state_dict = model.state_dict() torch.save( { "model": state_dict, "iteration": iteration, "optimizer": optimizer.state_dict(), "learning_rate": learning_rate, }, checkpoint_path, ) def save_checkpoint_d(combd, sbd, optimizer, learning_rate, iteration, checkpoint_path): logger.info( "Saving model and optimizer state at epoch {} to {}".format( iteration, checkpoint_path ) ) if hasattr(combd, "module"): state_dict_combd = combd.module.state_dict() else: state_dict_combd = combd.state_dict() if hasattr(sbd, "module"): state_dict_sbd = sbd.module.state_dict() else: state_dict_sbd = sbd.state_dict() torch.save( { "combd": state_dict_combd, "sbd": state_dict_sbd, "iteration": iteration, "optimizer": optimizer.state_dict(), "learning_rate": learning_rate, }, checkpoint_path, ) def summarize( writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050, ): for k, v in scalars.items(): writer.add_scalar(k, v, global_step) for k, v in histograms.items(): writer.add_histogram(k, v, global_step) for k, v in images.items(): writer.add_image(k, v, global_step, dataformats="HWC") for k, v in audios.items(): writer.add_audio(k, v, global_step, audio_sampling_rate) def latest_checkpoint_path(dir_path, regex="G_*.pth"): f_list = glob.glob(os.path.join(dir_path, regex)) f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f)))) x = f_list[-1] print(x) return x def plot_spectrogram_to_numpy(spectrogram): global MATPLOTLIB_FLAG if not MATPLOTLIB_FLAG: import matplotlib matplotlib.use("Agg") MATPLOTLIB_FLAG = True mpl_logger = logging.getLogger("matplotlib") mpl_logger.setLevel(logging.WARNING) import matplotlib.pylab as plt import numpy as np fig, ax = plt.subplots(figsize=(10, 2)) im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none") plt.colorbar(im, ax=ax) plt.xlabel("Frames") plt.ylabel("Channels") plt.tight_layout() fig.canvas.draw() data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="") data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) plt.close() return data def plot_alignment_to_numpy(alignment, info=None): global MATPLOTLIB_FLAG if not MATPLOTLIB_FLAG: import matplotlib matplotlib.use("Agg") MATPLOTLIB_FLAG = True mpl_logger = logging.getLogger("matplotlib") mpl_logger.setLevel(logging.WARNING) import matplotlib.pylab as plt import numpy as np fig, ax = plt.subplots(figsize=(6, 4)) im = ax.imshow( alignment.transpose(), aspect="auto", origin="lower", interpolation="none" ) fig.colorbar(im, ax=ax) xlabel = "Decoder timestep" if info is not None: xlabel += "\n\n" + info plt.xlabel(xlabel) plt.ylabel("Encoder timestep") plt.tight_layout() fig.canvas.draw() data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="") data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) plt.close() return data def load_wav_to_torch(full_path): sampling_rate, data = read(full_path) return torch.FloatTensor(data.astype(np.float32)), sampling_rate def load_filepaths_and_text(filename, split="|"): with open(filename, encoding="utf-8") as f: filepaths_and_text = [line.strip().split(split) for line in f] return filepaths_and_text def get_hparams(init=True): """ todo: 结尾七人组: 保存频率、总epoch done bs done pretrainG、pretrainD done 卡号:os.en["CUDA_VISIBLE_DEVICES"] done if_latest done 模型:if_f0 done 采样率:自动选择config done 是否缓存数据集进GPU:if_cache_data_in_gpu done -m: 自动决定training_files路径,改掉train_nsf_load_pretrain.py里的hps.data.training_files done -c不要了 """ parser = argparse.ArgumentParser() # parser.add_argument('-c', '--config', type=str, default="configs/40k.json",help='JSON file for configuration') parser.add_argument( "-se", "--save_every_epoch", type=int, required=True, help="checkpoint save frequency (epoch)", ) parser.add_argument( "-te", "--total_epoch", type=int, required=True, help="total_epoch" ) parser.add_argument( "-pg", "--pretrainG", type=str, default="", help="Pretrained Discriminator path" ) parser.add_argument( "-pd", "--pretrainD", type=str, default="", help="Pretrained Generator path" ) parser.add_argument("-g", "--gpus", type=str, default="0", help="split by -") parser.add_argument( "-bs", "--batch_size", type=int, required=True, help="batch size" ) parser.add_argument( "-e", "--experiment_dir", type=str, required=True, help="experiment dir" ) # -m parser.add_argument( "-sr", "--sample_rate", type=str, required=True, help="sample rate, 32k/40k/48k" ) parser.add_argument( "-sw", "--save_every_weights", type=str, default="0", help="save the extracted model in weights directory when saving checkpoints", ) parser.add_argument( "-v", "--version", type=str, required=True, help="model version" ) parser.add_argument( "-f0", "--if_f0", type=int, required=True, help="use f0 as one of the inputs of the model, 1 or 0", ) parser.add_argument( "-l", "--if_latest", type=int, required=True, help="if only save the latest G/D pth file, 1 or 0", ) parser.add_argument( "-c", "--if_cache_data_in_gpu", type=int, required=True, help="if caching the dataset in GPU memory, 1 or 0", ) args = parser.parse_args() name = args.experiment_dir experiment_dir = os.path.join("./logs", args.experiment_dir) if not os.path.exists(experiment_dir): os.makedirs(experiment_dir) config_path = "configs/%s.json" % args.sample_rate config_save_path = os.path.join(experiment_dir, "config.json") if init: with open(config_path, "r") as f: data = f.read() with open(config_save_path, "w") as f: f.write(data) else: with open(config_save_path, "r") as f: data = f.read() config = json.loads(data) hparams = HParams(**config) hparams.model_dir = hparams.experiment_dir = experiment_dir hparams.save_every_epoch = args.save_every_epoch hparams.name = name hparams.total_epoch = args.total_epoch hparams.pretrainG = args.pretrainG hparams.pretrainD = args.pretrainD hparams.version = args.version hparams.gpus = args.gpus hparams.train.batch_size = args.batch_size hparams.sample_rate = args.sample_rate hparams.if_f0 = args.if_f0 hparams.if_latest = args.if_latest hparams.save_every_weights = args.save_every_weights hparams.if_cache_data_in_gpu = args.if_cache_data_in_gpu hparams.data.training_files = "%s/filelist.txt" % experiment_dir return hparams def get_hparams_from_dir(model_dir): config_save_path = os.path.join(model_dir, "config.json") with open(config_save_path, "r") as f: data = f.read() config = json.loads(data) hparams = HParams(**config) hparams.model_dir = model_dir return hparams def get_hparams_from_file(config_path): with open(config_path, "r") as f: data = f.read() config = json.loads(data) hparams = HParams(**config) return hparams def check_git_hash(model_dir): source_dir = os.path.dirname(os.path.realpath(__file__)) if not os.path.exists(os.path.join(source_dir, ".git")): logger.warn( "{} is not a git repository, therefore hash value comparison will be ignored.".format( source_dir ) ) return cur_hash = subprocess.getoutput("git rev-parse HEAD") path = os.path.join(model_dir, "githash") if os.path.exists(path): saved_hash = open(path).read() if saved_hash != cur_hash: logger.warn( "git hash values are different. {}(saved) != {}(current)".format( saved_hash[:8], cur_hash[:8] ) ) else: open(path, "w").write(cur_hash) def get_logger(model_dir, filename="train.log"): global logger logger = logging.getLogger(os.path.basename(model_dir)) logger.setLevel(logging.DEBUG) formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s") if not os.path.exists(model_dir): os.makedirs(model_dir) h = logging.FileHandler(os.path.join(model_dir, filename)) h.setLevel(logging.DEBUG) h.setFormatter(formatter) logger.addHandler(h) return logger class HParams: def __init__(self, **kwargs): for k, v in kwargs.items(): if type(v) == dict: v = HParams(**v) self[k] = v def keys(self): return self.__dict__.keys() def items(self): return self.__dict__.items() def values(self): return self.__dict__.values() def __len__(self): return len(self.__dict__) def __getitem__(self, key): return getattr(self, key) def __setitem__(self, key, value): return setattr(self, key, value) def __contains__(self, key): return key in self.__dict__ def __repr__(self): return self.__dict__.__repr__()