|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
import os |
|
import requests |
|
|
|
|
|
hf_client = InferenceClient("mistralai/Mistral-Nemo-Instruct-2407", token=os.getenv("HF_TOKEN")) |
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
|
|
system_prefix = """ |
|
If the input language is Korean, respond in Korean. If it's English, respond in English. |
|
""" |
|
|
|
messages = [{"role": "system", "content": f"{system_prefix} {system_message}"}] |
|
|
|
for val in history: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
response = "" |
|
|
|
for message in hf_client.chat_completion( |
|
messages, |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
): |
|
token = message.choices[0].delta.content |
|
if token is not None: |
|
response += token.strip("") |
|
yield response |
|
|
|
|
|
theme = "Nymbo/Nymbo_Theme" |
|
|
|
css = """ |
|
footer { |
|
visibility: hidden; |
|
} |
|
""" |
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value=""" |
|
You are an AI assistant. |
|
""", label="System Prompt"), |
|
gr.Slider(minimum=1, maximum=2000, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p (nucleus sampling)", |
|
), |
|
], |
|
theme=theme, |
|
css=css |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |