flx8lora / app.py
fantos's picture
Update app.py
66fcae2 verified
raw
history blame
11 kB
import spaces
import argparse
import os
import time
from os import path
import shutil
from datetime import datetime
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
import gradio as gr
import torch
from diffusers import FluxPipeline
from PIL import Image
# Setup and initialization code
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
gallery_path = path.join(path.dirname(path.abspath(__file__)), "gallery")
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path
torch.backends.cuda.matmul.allow_tf32 = True
# Create gallery directory if it doesn't exist
if not path.exists(gallery_path):
os.makedirs(gallery_path, exist_ok=True)
class timer:
def __init__(self, method_name="timed process"):
self.method = method_name
def __enter__(self):
self.start = time.time()
print(f"{self.method} starts")
def __exit__(self, exc_type, exc_val, exc_tb):
end = time.time()
print(f"{self.method} took {str(round(end - self.start, 2))}s")
# Model initialization
if not path.exists(cache_path):
os.makedirs(cache_path, exist_ok=True)
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"))
pipe.fuse_lora(lora_scale=0.125)
pipe.to(device="cuda", dtype=torch.bfloat16)
css = """
footer {display: none !important}
.gradio-container {max-width: 1200px; margin: auto;}
.contain {background: rgba(255, 255, 255, 0.05); border-radius: 12px; padding: 20px;}
.generate-btn {
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important;
border: none !important;
color: white !important;
}
.generate-btn:hover {
transform: translateY(-2px);
box-shadow: 0 5px 15px rgba(0,0,0,0.2);
}
.title {
text-align: center;
font-size: 2.5em;
font-weight: bold;
margin-bottom: 1em;
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
}
/* ๊ฐค๋Ÿฌ๋ฆฌ ์ปจํ…Œ์ด๋„ˆ CSS ์ˆ˜์ • */
.gallery-container {
display: grid;
grid-template-columns: repeat(auto-fill, minmax(150px, 1fr));
gap: 10px;
padding: 10px;
background: rgba(255, 255, 255, 0.05);
border-radius: 8px;
margin-top: 10px;
width: 100%;
}
.gallery-image {
width: 100%;
aspect-ratio: 1;
object-fit: cover;
border-radius: 4px;
transition: transform 0.2s;
}
.gallery-image:hover {
transform: scale(1.05);
}
/* ๊ฐค๋Ÿฌ๋ฆฌ์™€ ์ถœ๋ ฅ ์ด๋ฏธ์ง€ ์ปจํ…Œ์ด๋„ˆ ๋„ˆ๋น„ ํ†ต์ผ */
.output-image, #gallery {
width: 100% !important;
}
"""
def save_image(image):
"""Save the generated image and return the path"""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"generated_{timestamp}.png"
filepath = os.path.join(gallery_path, filename)
if isinstance(image, Image.Image):
image.save(filepath)
else:
image = Image.fromarray(image)
image.save(filepath)
return filepath
def load_gallery():
"""Load all images from the gallery directory"""
image_files = [f for f in os.listdir(gallery_path) if f.endswith(('.png', '.jpg', '.jpeg'))]
image_files.sort(reverse=True) # Most recent first
return [os.path.join(gallery_path, f) for f in image_files]
# Create Gradio interface
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
gr.HTML('<div class="title">AI Image Generator</div>')
gr.HTML('<div style="text-align: center; margin-bottom: 2em; color: #666;">Create stunning images from your descriptions</div>')
with gr.Row():
with gr.Column(scale=3):
prompt = gr.Textbox(
label="Image Description",
placeholder="Describe the image you want to create...",
lines=3
)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
height = gr.Slider(
label="Height",
minimum=256,
maximum=1152,
step=64,
value=1024
)
width = gr.Slider(
label="Width",
minimum=256,
maximum=1152,
step=64,
value=1024
)
with gr.Row():
steps = gr.Slider(
label="Inference Steps",
minimum=6,
maximum=25,
step=1,
value=8
)
scales = gr.Slider(
label="Guidance Scale",
minimum=0.0,
maximum=5.0,
step=0.1,
value=3.5
)
def get_random_seed():
return torch.randint(0, 1000000, (1,)).item()
seed = gr.Number(
label="Seed (random by default, set for reproducibility)",
value=get_random_seed(),
precision=0
)
randomize_seed = gr.Button("๐ŸŽฒ Randomize Seed", elem_classes=["generate-btn"])
generate_btn = gr.Button(
"โœจ Generate Image",
elem_classes=["generate-btn"]
)
gr.HTML("""
<div style="margin-top: 1em; padding: 1em; border-radius: 8px; background: rgba(255, 255, 255, 0.05);">
<h4 style="margin: 0 0 0.5em 0;">Example Prompts:</h4>
<div style="background: rgba(75, 121, 161, 0.1); padding: 1em; border-radius: 8px; margin-bottom: 1em;">
<p style="font-weight: bold; margin: 0 0 0.5em 0;">๐ŸŒ… Cinematic Landscape</p>
<p style="margin: 0; font-style: italic;">"A breathtaking mountain vista at golden hour, dramatic sunbeams piercing through clouds, snow-capped peaks reflecting warm light, ultra-high detail photography, artistically composed, award-winning landscape photo, shot on Hasselblad"</p>
</div>
<div style="background: rgba(75, 121, 161, 0.1); padding: 1em; border-radius: 8px; margin-bottom: 1em;">
<p style="font-weight: bold; margin: 0 0 0.5em 0;">๐Ÿ–ผ๏ธ Fantasy Portrait</p>
<p style="margin: 0; font-style: italic;">"Ethereal portrait of an elven queen with flowing silver hair, adorned with luminescent crystals, intricate crown of twisted gold and moonstone, soft ethereal lighting, detailed facial features, fantasy art style, highly detailed, painted by Artgerm and Charlie Bowater"</p>
</div>
<div style="background: rgba(75, 121, 161, 0.1); padding: 1em; border-radius: 8px; margin-bottom: 1em;">
<p style="font-weight: bold; margin: 0 0 0.5em 0;">๐ŸŒƒ Cyberpunk Scene</p>
<p style="margin: 0; font-style: italic;">"Neon-lit cyberpunk street market in rain, holographic advertisements reflecting in puddles, street vendors with glowing cyber-augmentations, dense urban environment, atmospheric fog, cinematic lighting, inspired by Blade Runner 2049"</p>
</div>
<div style="background: rgba(75, 121, 161, 0.1); padding: 1em; border-radius: 8px; margin-bottom: 1em;">
<p style="font-weight: bold; margin: 0 0 0.5em 0;">๐ŸŽจ Abstract Art</p>
<p style="margin: 0; font-style: italic;">"Vibrant abstract composition of flowing liquid colors, dynamic swirls of iridescent purples and teals, golden geometric patterns emerging from chaos, luxury art style, ultra-detailed, painted in oil on canvas, inspired by James Jean and Gustav Klimt"</p>
</div>
<div style="background: rgba(75, 121, 161, 0.1); padding: 1em; border-radius: 8px; margin-bottom: 1em;">
<p style="font-weight: bold; margin: 0 0 0.5em 0;">๐ŸŒฟ Macro Nature</p>
<p style="margin: 0; font-style: italic;">"Extreme macro photography of a dewdrop on a butterfly wing, rainbow light refraction, crystalline clarity, intricate wing scales visible, natural bokeh background, professional studio lighting, shot with Canon MP-E 65mm lens"</p>
</div>
</div>
""")
with gr.Column(scale=4):
# Current generated image
output = gr.Image(label="Generated Image", elem_id="output-image", elem_classes=["output-image"])
# Gallery of generated images
gallery = gr.Gallery(
label="Generated Images Gallery",
show_label=True,
elem_id="gallery",
columns=[4],
rows=[2],
height="auto",
object_fit="contain",
elem_classes=["gallery-container"]
)
# Load existing gallery images on startup
gallery.value = load_gallery()
@spaces.GPU
def process_and_save_image(height, width, steps, scales, prompt, seed):
global pipe
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
generated_image = pipe(
prompt=[prompt],
generator=torch.Generator().manual_seed(int(seed)),
num_inference_steps=int(steps),
guidance_scale=float(scales),
height=int(height),
width=int(width),
max_sequence_length=256
).images[0]
# Save the generated image
save_image(generated_image)
# Return both the generated image and updated gallery
return generated_image, load_gallery()
# Connect the generation button to both the image output and gallery update
def update_seed():
return get_random_seed()
generate_btn.click(
process_and_save_image,
inputs=[height, width, steps, scales, prompt, seed],
outputs=[output, gallery]
)
# Add randomize seed button functionality
randomize_seed.click(
update_seed,
outputs=[seed]
)
# Also randomize seed after each generation
generate_btn.click(
update_seed,
outputs=[seed]
)
if __name__ == "__main__":
demo.launch()