Spaces:
Running
on
Zero
Running
on
Zero
import sys | |
sys.path.append('./') | |
import gradio as gr | |
import spaces | |
import os | |
import sys | |
import subprocess | |
import numpy as np | |
from PIL import Image | |
import cv2 | |
import torch | |
import random | |
from transformers import pipeline | |
os.system("pip install -e ./controlnet_aux") | |
from controlnet_aux import OpenposeDetector, CannyDetector | |
from depth_anything_v2.dpt import DepthAnythingV2 | |
from huggingface_hub import hf_hub_download | |
from huggingface_hub import login | |
hf_token = os.environ.get("HF_TOKEN_GATED") | |
login(token=hf_token) | |
MAX_SEED = np.iinfo(np.int32).max | |
# ๋ฒ์ญ๊ธฐ ์ค์ | |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en") | |
def translate_to_english(text): | |
if any('\uAC00' <= char <= '\uD7A3' for char in text): | |
return translator(text, max_length=512)[0]['translation_text'] | |
return text | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' | |
model_configs = { | |
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]}, | |
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]}, | |
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}, | |
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]} | |
} | |
encoder = 'vitl' | |
model = DepthAnythingV2(**model_configs[encoder]) | |
filepath = hf_hub_download(repo_id=f"depth-anything/Depth-Anything-V2-Large", filename=f"depth_anything_v2_vitl.pth", repo_type="model") | |
state_dict = torch.load(filepath, map_location="cpu") | |
model.load_state_dict(state_dict) | |
model = model.to(DEVICE).eval() | |
import torch | |
from diffusers.utils import load_image | |
from diffusers import FluxControlNetPipeline, FluxControlNetModel | |
from diffusers.models import FluxMultiControlNetModel | |
base_model = 'black-forest-labs/FLUX.1-dev' | |
controlnet_model = 'Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro' | |
controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16) | |
controlnet = FluxMultiControlNetModel([controlnet]) | |
pipe = FluxControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16) | |
pipe.to("cuda") | |
mode_mapping = {"์บ๋":0, "ํ์ผ":1, "๊น์ด":2, "๋ธ๋ฌ":3, "์คํํฌ์ฆ":4, "๊ทธ๋ ์ด์ค์ผ์ผ":5, "์ ํ์ง": 6} | |
strength_mapping = {"์บ๋":0.65, "ํ์ผ":0.45, "๊น์ด":0.55, "๋ธ๋ฌ":0.45, "์คํํฌ์ฆ":0.55, "๊ทธ๋ ์ด์ค์ผ์ผ":0.45, "์ ํ์ง": 0.4} | |
canny = CannyDetector() | |
open_pose = OpenposeDetector.from_pretrained("lllyasviel/Annotators") | |
torch.backends.cuda.matmul.allow_tf32 = True | |
pipe.vae.enable_tiling() | |
pipe.vae.enable_slicing() | |
pipe.enable_model_cpu_offload() # for saving memory | |
def convert_from_image_to_cv2(img: Image) -> np.ndarray: | |
return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) | |
def convert_from_cv2_to_image(img: np.ndarray) -> Image: | |
return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) | |
def extract_depth(image): | |
image = np.asarray(image) | |
depth = model.infer_image(image[:, :, ::-1]) | |
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0 | |
depth = depth.astype(np.uint8) | |
gray_depth = Image.fromarray(depth).convert('RGB') | |
return gray_depth | |
def extract_openpose(img): | |
processed_image_open_pose = open_pose(img, hand_and_face=True) | |
return processed_image_open_pose | |
def extract_canny(image): | |
processed_image_canny = canny(image) | |
return processed_image_canny | |
def apply_gaussian_blur(image, kernel_size=(21, 21)): | |
image = convert_from_image_to_cv2(image) | |
blurred_image = convert_from_cv2_to_image(cv2.GaussianBlur(image, kernel_size, 0)) | |
return blurred_image | |
def convert_to_grayscale(image): | |
image = convert_from_image_to_cv2(image) | |
gray_image = convert_from_cv2_to_image(cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)) | |
return gray_image | |
def add_gaussian_noise(image, mean=0, sigma=10): | |
image = convert_from_image_to_cv2(image) | |
noise = np.random.normal(mean, sigma, image.shape) | |
noisy_image = convert_from_cv2_to_image(np.clip(image.astype(np.float32) + noise, 0, 255).astype(np.uint8)) | |
return noisy_image | |
def tile(input_image, resolution=768): | |
input_image = convert_from_image_to_cv2(input_image) | |
H, W, C = input_image.shape | |
H = float(H) | |
W = float(W) | |
k = float(resolution) / min(H, W) | |
H *= k | |
W *= k | |
H = int(np.round(H / 64.0)) * 64 | |
W = int(np.round(W / 64.0)) * 64 | |
img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA) | |
img = convert_from_cv2_to_image(img) | |
return img | |
def resize_img(input_image, max_side=768, min_side=512, size=None, | |
pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64): | |
w, h = input_image.size | |
if size is not None: | |
w_resize_new, h_resize_new = size | |
else: | |
ratio = min_side / min(h, w) | |
w, h = round(ratio*w), round(ratio*h) | |
ratio = max_side / max(h, w) | |
input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode) | |
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number | |
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number | |
input_image = input_image.resize([w_resize_new, h_resize_new], mode) | |
if pad_to_max_side: | |
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255 | |
offset_x = (max_side - w_resize_new) // 2 | |
offset_y = (max_side - h_resize_new) // 2 | |
res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image) | |
input_image = Image.fromarray(res) | |
return input_image | |
def infer(cond_in, image_in, prompt, inference_steps, guidance_scale, control_mode, control_strength, seed, progress=gr.Progress(track_tqdm=True)): | |
control_mode_num = mode_mapping[control_mode] | |
prompt = translate_to_english(prompt) | |
if cond_in is None: | |
if image_in is not None: | |
image_in = resize_img(load_image(image_in)) | |
if control_mode == "์บ๋": | |
control_image = extract_canny(image_in) | |
elif control_mode == "๊น์ด": | |
control_image = extract_depth(image_in) | |
elif control_mode == "์คํํฌ์ฆ": | |
control_image = extract_openpose(image_in) | |
elif control_mode == "๋ธ๋ฌ": | |
control_image = apply_gaussian_blur(image_in) | |
elif control_mode == "์ ํ์ง": | |
control_image = add_gaussian_noise(image_in) | |
elif control_mode == "๊ทธ๋ ์ด์ค์ผ์ผ": | |
control_image = convert_to_grayscale(image_in) | |
elif control_mode == "ํ์ผ": | |
control_image = tile(image_in) | |
else: | |
control_image = resize_img(load_image(cond_in)) | |
width, height = control_image.size | |
image = pipe( | |
prompt, | |
control_image=[control_image], | |
control_mode=[control_mode_num], | |
width=width, | |
height=height, | |
controlnet_conditioning_scale=[control_strength], | |
num_inference_steps=inference_steps, | |
guidance_scale=guidance_scale, | |
generator=torch.manual_seed(seed), | |
).images[0] | |
torch.cuda.empty_cache() | |
return image, control_image, gr.update(visible=True) | |
css = """ | |
footer { | |
visibility: hidden; | |
} | |
""" | |
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(equal_height=True): | |
cond_in = gr.Image(label="์ฒ๋ฆฌ๋ ์ปจํธ๋กค ์ด๋ฏธ์ง ์ ๋ก๋", sources=["upload"], type="filepath") | |
image_in = gr.Image(label="์ฐธ์กฐ ์ด๋ฏธ์ง์์ ์กฐ๊ฑด ์ถ์ถ (์ ํ์ฌํญ)", sources=["upload"], type="filepath") | |
prompt = gr.Textbox(label="ํ๋กฌํํธ", value="์ต๊ณ ํ์ง") | |
with gr.Accordion("์ปจํธ๋กค๋ท"): | |
control_mode = gr.Radio( | |
["์บ๋", "๊น์ด", "์คํํฌ์ฆ", "๊ทธ๋ ์ด์ค์ผ์ผ", "๋ธ๋ฌ", "ํ์ผ", "์ ํ์ง"], label="๋ชจ๋", value="๊ทธ๋ ์ด์ค์ผ์ผ", | |
info="์ปจํธ๋กค ๋ชจ๋ ์ ํ, ๋ชจ๋ ์ด๋ฏธ์ง์ ์ ์ฉ๋ฉ๋๋ค" | |
) | |
control_strength = gr.Slider( | |
label="์ปจํธ๋กค ๊ฐ๋", | |
minimum=0, | |
maximum=1.0, | |
step=0.05, | |
value=0.50, | |
) | |
seed = gr.Slider( | |
label="์๋", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=42, | |
) | |
randomize_seed = gr.Checkbox(label="์๋ ๋ฌด์์ํ", value=True) | |
with gr.Accordion("๊ณ ๊ธ ์ค์ ", open=False): | |
with gr.Column(): | |
with gr.Row(): | |
inference_steps = gr.Slider(label="์ถ๋ก ๋จ๊ณ", minimum=1, maximum=50, step=1, value=24) | |
guidance_scale = gr.Slider(label="๊ฐ์ด๋์ค ์ค์ผ์ผ", minimum=1.0, maximum=10.0, step=0.1, value=3.5) | |
submit_btn = gr.Button("์ ์ถ") | |
with gr.Column(): | |
result = gr.Image(label="๊ฒฐ๊ณผ") | |
processed_cond = gr.Image(label="์ ์ฒ๋ฆฌ๋ ์กฐ๊ฑด") | |
submit_btn.click( | |
fn=randomize_seed_fn, | |
inputs=[seed, randomize_seed], | |
outputs=seed, | |
queue=False, | |
api_name=False | |
).then( | |
fn = infer, | |
inputs = [cond_in, image_in, prompt, inference_steps, guidance_scale, control_mode, control_strength, seed], | |
outputs = [result, processed_cond], | |
show_api=False | |
) | |
demo.queue(api_open=False) | |
demo.launch() |