Spaces:
Runtime error
Runtime error
File size: 15,302 Bytes
2caf84c 0e0ee20 c724573 2caf84c 7039ded 607d766 e2c1d93 459b9da 5ce58bf 459b9da 0e0ee20 d75fd31 0e0ee20 c724573 463aefd c724573 0e0ee20 f3e96f9 c59400c c724573 e2c1d93 5ecece8 0e0ee20 459b9da 0e0ee20 459b9da 5ecece8 2c3cc35 0e0ee20 5ecece8 0e0ee20 0b93385 e93307c aad2ddd 5b82e60 459b9da 463aefd c724573 e93307c 72cad74 463aefd 72cad74 463aefd 72cad74 c724573 72cad74 f3e96f9 0e0ee20 459b9da 0e0ee20 e93307c 459b9da e93307c 459b9da e93307c 459b9da e93307c 459b9da c724573 459b9da 69da03e 0e0ee20 459b9da e2c1d93 3c05113 0e0ee20 459b9da e2c1d93 c724573 fd8e800 c724573 3c05113 c724573 3c05113 c724573 3c05113 459b9da 5ce58bf 459b9da 0e0ee20 2caf84c 4800859 2caf84c 4800859 2caf84c 40d0ad1 2caf84c 4df41e1 2caf84c 4df41e1 2caf84c 4df41e1 2caf84c 5ce58bf 0b93385 f647d1f 5ce58bf 459b9da f647d1f 131e37d 0e0ee20 5ce58bf 8648a3b 5ce58bf 0e0ee20 5ce58bf 0e0ee20 5ecece8 751429f 5ecece8 2caf84c 4df41e1 2caf84c 459b9da 07d3eff 0e0ee20 f3e96f9 459b9da 0e0ee20 5ce58bf 0e0ee20 3c05113 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
import os
import gradio as gr
import json
import logging
import torch
from PIL import Image
import spaces
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
import copy
import random
import time
from transformers import pipeline
import sqlite3
from datetime import datetime
# ๋ฐ์ดํฐ๋ฒ ์ด์ค ์ด๊ธฐํ
def init_db():
conn = sqlite3.connect('gallery.db')
c = conn.cursor()
c.execute('''CREATE TABLE IF NOT EXISTS images
(id INTEGER PRIMARY KEY AUTOINCREMENT,
model_name TEXT,
prompt TEXT,
image_path TEXT,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP)''')
conn.commit()
conn.close()
# ์ด๋ฏธ์ง ์ ์ฅ ํจ์
def save_image(image, model_name, prompt):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"gallery_{timestamp}.png"
image.save(os.path.join("gallery", filename))
conn = sqlite3.connect('gallery.db')
c = conn.cursor()
c.execute("INSERT INTO images (model_name, prompt, image_path) VALUES (?, ?, ?)",
(model_name, prompt, filename))
conn.commit()
conn.close()
# ๊ฐค๋ฌ๋ฆฌ ์ด๋ฏธ์ง ๋ก๋ ํจ์
def load_gallery_images():
conn = sqlite3.connect('gallery.db')
c = conn.cursor()
c.execute("SELECT model_name, prompt, image_path FROM images ORDER BY created_at DESC")
rows = c.fetchall()
conn.close()
return [(os.path.join("gallery", row[2]), f"{row[0]}: {row[1]}") for row in rows]
# ๋ฒ์ญ ๋ชจ๋ธ ์ด๊ธฐํ
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
# ํ๋กฌํํธ ์ฒ๋ฆฌ ํจ์ ์ถ๊ฐ
def process_prompt(prompt):
if any('\u3131' <= char <= '\u3163' or '\uac00' <= char <= '\ud7a3' for char in prompt):
translated = translator(prompt)[0]['translation_text']
return prompt, translated
return prompt, prompt
KEY_JSON = os.getenv("KEY_JSON")
with open(KEY_JSON, 'r') as f:
loras = json.load(f)
# Initialize the base model
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
base_model = "black-forest-labs/FLUX.1-dev"
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
MAX_SEED = 2**32-1
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
class calculateDuration:
def __init__(self, activity_name=""):
self.activity_name = activity_name
def __enter__(self):
self.start_time = time.time()
return self
def __exit__(self, exc_type, exc_value, traceback):
self.end_time = time.time()
self.elapsed_time = self.end_time - self.start_time
if self.activity_name:
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
else:
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
def update_selection(evt: gr.SelectData, width, height):
selected_lora = loras[evt.index]
new_placeholder = f"{selected_lora['title']}๋ฅผ ์ํ ํ๋กฌํํธ๋ฅผ ์
๋ ฅํ์ธ์"
lora_repo = selected_lora["repo"]
updated_text = f"### ์ ํ๋จ: [{lora_repo}](https://huggingface.co/{lora_repo}) โจ"
if "aspect" in selected_lora:
if selected_lora["aspect"] == "portrait":
width = 768
height = 1024
elif selected_lora["aspect"] == "landscape":
width = 1024
height = 768
else:
width = 1024
height = 1024
return (
gr.update(placeholder=new_placeholder),
updated_text,
evt.index,
width,
height,
)
@spaces.GPU(duration=70)
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress):
pipe.to("cuda")
generator = torch.Generator(device="cuda").manual_seed(seed)
with calculateDuration("์ด๋ฏธ์ง ์์ฑ"):
# Generate image
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
prompt=prompt_mash,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
output_type="pil",
good_vae=good_vae,
):
yield img
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
if selected_index is None:
raise gr.Error("์งํํ๊ธฐ ์ ์ LoRA๋ฅผ ์ ํํด์ผ ํฉ๋๋ค.")
original_prompt, english_prompt = process_prompt(prompt)
selected_lora = loras[selected_index]
lora_path = selected_lora["repo"]
trigger_word = selected_lora["trigger_word"]
if(trigger_word):
if "trigger_position" in selected_lora:
if selected_lora["trigger_position"] == "prepend":
prompt_mash = f"{trigger_word} {english_prompt}"
else:
prompt_mash = f"{english_prompt} {trigger_word}"
else:
prompt_mash = f"{trigger_word} {english_prompt}"
else:
prompt_mash = english_prompt
with calculateDuration("LoRA ์ธ๋ก๋"):
pipe.unload_lora_weights()
# Load LoRA weights
with calculateDuration(f"{selected_lora['title']}์ LoRA ๊ฐ์ค์น ๋ก๋"):
if "weights" in selected_lora:
pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"])
else:
pipe.load_lora_weights(lora_path)
# Set random seed for reproducibility
with calculateDuration("์๋ ๋ฌด์์ํ"):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress)
# Consume the generator to get the final image
final_image = None
step_counter = 0
for image in image_generator:
step_counter+=1
final_image = image
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
yield image, seed, gr.update(value=progress_bar, visible=True), original_prompt, english_prompt
# ๊ฐค๋ฌ๋ฆฌ์ ์ด๋ฏธ์ง ์ ์ฅ
save_image(final_image, selected_lora['title'], original_prompt)
yield final_image, seed, gr.update(value=progress_bar, visible=False), original_prompt, english_prompt
def get_huggingface_safetensors(link):
split_link = link.split("/")
if(len(split_link) == 2):
model_card = ModelCard.load(link)
base_model = model_card.data.get("base_model")
print(base_model)
if((base_model != "black-forest-labs/FLUX.1-dev") and (base_model != "black-forest-labs/FLUX.1-schnell")):
raise Exception("Not a FLUX LoRA!")
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
trigger_word = model_card.data.get("instance_prompt", "")
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
fs = HfFileSystem()
try:
list_of_files = fs.ls(link, detail=False)
for file in list_of_files:
if(file.endswith(".safetensors")):
safetensors_name = file.split("/")[-1]
if (not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp"))):
image_elements = file.split("/")
image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
except Exception as e:
print(e)
gr.Warning(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
raise Exception(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
return split_link[1], link, safetensors_name, trigger_word, image_url
def check_custom_model(link):
if(link.startswith("https://")):
if(link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co")):
link_split = link.split("huggingface.co/")
return get_huggingface_safetensors(link_split[1])
else:
return get_huggingface_safetensors(link)
def add_custom_lora(custom_lora):
global loras
if(custom_lora):
try:
title, repo, path, trigger_word, image = check_custom_model(custom_lora)
print(f"Loaded custom LoRA: {repo}")
card = f'''
<div class="custom_lora_card">
<span>Loaded custom LoRA:</span>
<div class="card_internal">
<img src="{image}" />
<div>
<h3>{title}</h3>
<small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}<br></small>
</div>
</div>
</div>
'''
existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
if(not existing_item_index):
new_item = {
"image": image,
"title": title,
"repo": repo,
"weights": path,
"trigger_word": trigger_word
}
print(new_item)
existing_item_index = len(loras)
loras.append(new_item)
return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
except Exception as e:
gr.Warning(f"Invalid LoRA: either you entered an invalid link, or a non-FLUX LoRA")
return gr.update(visible=True, value=f"Invalid LoRA: either you entered an invalid link, a non-FLUX LoRA"), gr.update(visible=True), gr.update(), "", None, ""
else:
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
def remove_custom_lora():
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
run_lora.zerogpu = True
css = """
footer {
visibility: hidden;
}
"""
# ๊ฐค๋ฌ๋ฆฌ ๋๋ ํ ๋ฆฌ ์์ฑ
if not os.path.exists('gallery'):
os.makedirs('gallery')
# ๋ฐ์ดํฐ๋ฒ ์ด์ค ์ด๊ธฐํ
init_db()
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as app:
selected_index = gr.State(None)
with gr.Tabs():
with gr.TabItem("์์ฑ"):
with gr.Row():
with gr.Column(scale=3):
prompt = gr.Textbox(label="ํ๋กฌํํธ", lines=1, placeholder="LoRA๋ฅผ ์ ํํ ํ ํ๋กฌํํธ๋ฅผ ์
๋ ฅํ์ธ์ (ํ๊ธ ๋๋ ์์ด)")
with gr.Column(scale=1, elem_id="gen_column"):
generate_button = gr.Button("์์ฑ", variant="primary", elem_id="gen_btn")
with gr.Row():
with gr.Column():
selected_info = gr.Markdown("")
gallery = gr.Gallery(
[(item["image"], item["title"]) for item in loras],
label="LoRA ๊ฐค๋ฌ๋ฆฌ",
allow_preview=False,
columns=3,
elem_id="gallery"
)
with gr.Group():
custom_lora = gr.Textbox(label="์ปค์คํ
LoRA", info="LoRA Hugging Face ๊ฒฝ๋ก", placeholder="multimodalart/vintage-ads-flux")
gr.Markdown("[FLUX LoRA ๋ชฉ๋ก ํ์ธ](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
custom_lora_info = gr.HTML(visible=False)
custom_lora_button = gr.Button("์ปค์คํ
LoRA ์ ๊ฑฐ", visible=False)
with gr.Column():
progress_bar = gr.Markdown(elem_id="progress",visible=False)
result = gr.Image(label="์์ฑ๋ ์ด๋ฏธ์ง")
original_prompt_display = gr.Textbox(label="์๋ณธ ํ๋กฌํํธ")
english_prompt_display = gr.Textbox(label="์์ด ํ๋กฌํํธ")
with gr.Row():
with gr.Accordion("๊ณ ๊ธ ์ค์ ", open=False):
with gr.Column():
with gr.Row():
cfg_scale = gr.Slider(label="CFG ์ค์ผ์ผ", minimum=1, maximum=20, step=0.5, value=3.5)
steps = gr.Slider(label="์คํ
", minimum=1, maximum=50, step=1, value=28)
with gr.Row():
width = gr.Slider(label="๋๋น", minimum=256, maximum=1536, step=64, value=1024)
height = gr.Slider(label="๋์ด", minimum=256, maximum=1536, step=64, value=1024)
with gr.Row():
randomize_seed = gr.Checkbox(True, label="์๋ ๋ฌด์์ํ")
seed = gr.Slider(label="์๋", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
lora_scale = gr.Slider(label="LoRA ์ค์ผ์ผ", minimum=0, maximum=3, step=0.01, value=0.95)
with gr.TabItem("๊ฐค๋ฌ๋ฆฌ"):
gallery_images = gr.Gallery(
load_gallery_images(),
label="์์ฑ๋ ์ด๋ฏธ์ง ๊ฐค๋ฌ๋ฆฌ",
columns=3,
rows=3,
height="auto"
)
refresh_button = gr.Button("๊ฐค๋ฌ๋ฆฌ ์๋ก๊ณ ์นจ")
gallery.select(
update_selection,
inputs=[width, height],
outputs=[prompt, selected_info, selected_index, width, height]
)
custom_lora.input(
add_custom_lora,
inputs=[custom_lora],
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
)
custom_lora_button.click(
remove_custom_lora,
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
)
gr.on(
triggers=[generate_button.click, prompt.submit],
fn=run_lora,
inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale],
outputs=[result, seed, progress_bar, original_prompt_display, english_prompt_display]
)
refresh_button.click(
lambda: gr.update(value=load_gallery_images()),
outputs=[gallery_images]
)
app.queue()
app.launch() |