ginipick commited on
Commit
24f2920
1 Parent(s): caae62d

Create app-backup.py

Browse files
Files changed (1) hide show
  1. app-backup.py +284 -0
app-backup.py ADDED
@@ -0,0 +1,284 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gradio as gr
3
+ import json
4
+ import logging
5
+ import torch
6
+ from PIL import Image
7
+ import spaces
8
+ from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
9
+ from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
10
+
11
+ from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
12
+ import copy
13
+ import random
14
+ import time
15
+
16
+ # Load LoRAs from JSON file
17
+ with open('loras.json', 'r') as f:
18
+ loras = json.load(f)
19
+
20
+ # Initialize the base model
21
+ dtype = torch.bfloat16
22
+ device = "cuda" if torch.cuda.is_available() else "cpu"
23
+ base_model = "black-forest-labs/FLUX.1-dev"
24
+
25
+ taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
26
+ good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
27
+ pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
28
+
29
+ MAX_SEED = 2**32-1
30
+
31
+ pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
32
+
33
+ class calculateDuration:
34
+ def __init__(self, activity_name=""):
35
+ self.activity_name = activity_name
36
+
37
+ def __enter__(self):
38
+ self.start_time = time.time()
39
+ return self
40
+
41
+ def __exit__(self, exc_type, exc_value, traceback):
42
+ self.end_time = time.time()
43
+ self.elapsed_time = self.end_time - self.start_time
44
+ if self.activity_name:
45
+ print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
46
+ else:
47
+ print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
48
+
49
+ def update_selection(evt: gr.SelectData, width, height):
50
+ selected_lora = loras[evt.index]
51
+ new_placeholder = f"Type a prompt for {selected_lora['title']}"
52
+ lora_repo = selected_lora["repo"]
53
+ updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
54
+ if "aspect" in selected_lora:
55
+ if selected_lora["aspect"] == "portrait":
56
+ width = 768
57
+ height = 1024
58
+ elif selected_lora["aspect"] == "landscape":
59
+ width = 1024
60
+ height = 768
61
+ else:
62
+ width = 1024
63
+ height = 1024
64
+ return (
65
+ gr.update(placeholder=new_placeholder),
66
+ updated_text,
67
+ evt.index,
68
+ width,
69
+ height,
70
+ )
71
+
72
+ @spaces.GPU(duration=70)
73
+ def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress):
74
+ pipe.to("cuda")
75
+ generator = torch.Generator(device="cuda").manual_seed(seed)
76
+ with calculateDuration("Generating image"):
77
+ # Generate image
78
+ for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
79
+ prompt=prompt_mash,
80
+ num_inference_steps=steps,
81
+ guidance_scale=cfg_scale,
82
+ width=width,
83
+ height=height,
84
+ generator=generator,
85
+ joint_attention_kwargs={"scale": lora_scale},
86
+ output_type="pil",
87
+ good_vae=good_vae,
88
+ ):
89
+ yield img
90
+
91
+ def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
92
+ if selected_index is None:
93
+ raise gr.Error("You must select a LoRA before proceeding.")
94
+ selected_lora = loras[selected_index]
95
+ lora_path = selected_lora["repo"]
96
+ trigger_word = selected_lora["trigger_word"]
97
+ if(trigger_word):
98
+ if "trigger_position" in selected_lora:
99
+ if selected_lora["trigger_position"] == "prepend":
100
+ prompt_mash = f"{trigger_word} {prompt}"
101
+ else:
102
+ prompt_mash = f"{prompt} {trigger_word}"
103
+ else:
104
+ prompt_mash = f"{trigger_word} {prompt}"
105
+ else:
106
+ prompt_mash = prompt
107
+
108
+ with calculateDuration("Unloading LoRA"):
109
+ pipe.unload_lora_weights()
110
+
111
+ # Load LoRA weights
112
+ with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
113
+ if "weights" in selected_lora:
114
+ pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"])
115
+ else:
116
+ pipe.load_lora_weights(lora_path)
117
+
118
+ # Set random seed for reproducibility
119
+ with calculateDuration("Randomizing seed"):
120
+ if randomize_seed:
121
+ seed = random.randint(0, MAX_SEED)
122
+
123
+ image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress)
124
+
125
+ # Consume the generator to get the final image
126
+ final_image = None
127
+ step_counter = 0
128
+ for image in image_generator:
129
+ step_counter+=1
130
+ final_image = image
131
+ progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
132
+ yield image, seed, gr.update(value=progress_bar, visible=True)
133
+
134
+ yield final_image, seed, gr.update(value=progress_bar, visible=False)
135
+
136
+ def get_huggingface_safetensors(link):
137
+ split_link = link.split("/")
138
+ if(len(split_link) == 2):
139
+ model_card = ModelCard.load(link)
140
+ base_model = model_card.data.get("base_model")
141
+ print(base_model)
142
+ if((base_model != "black-forest-labs/FLUX.1-dev") and (base_model != "black-forest-labs/FLUX.1-schnell")):
143
+ raise Exception("Not a FLUX LoRA!")
144
+ image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
145
+ trigger_word = model_card.data.get("instance_prompt", "")
146
+ image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
147
+ fs = HfFileSystem()
148
+ try:
149
+ list_of_files = fs.ls(link, detail=False)
150
+ for file in list_of_files:
151
+ if(file.endswith(".safetensors")):
152
+ safetensors_name = file.split("/")[-1]
153
+ if (not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp"))):
154
+ image_elements = file.split("/")
155
+ image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
156
+ except Exception as e:
157
+ print(e)
158
+ gr.Warning(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
159
+ raise Exception(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
160
+ return split_link[1], link, safetensors_name, trigger_word, image_url
161
+
162
+ def check_custom_model(link):
163
+ if(link.startswith("https://")):
164
+ if(link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co")):
165
+ link_split = link.split("huggingface.co/")
166
+ return get_huggingface_safetensors(link_split[1])
167
+ else:
168
+ return get_huggingface_safetensors(link)
169
+
170
+ def add_custom_lora(custom_lora):
171
+ global loras
172
+ if(custom_lora):
173
+ try:
174
+ title, repo, path, trigger_word, image = check_custom_model(custom_lora)
175
+ print(f"Loaded custom LoRA: {repo}")
176
+ card = f'''
177
+ <div class="custom_lora_card">
178
+ <span>Loaded custom LoRA:</span>
179
+ <div class="card_internal">
180
+ <img src="{image}" />
181
+ <div>
182
+ <h3>{title}</h3>
183
+ <small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}<br></small>
184
+ </div>
185
+ </div>
186
+ </div>
187
+ '''
188
+ existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
189
+ if(not existing_item_index):
190
+ new_item = {
191
+ "image": image,
192
+ "title": title,
193
+ "repo": repo,
194
+ "weights": path,
195
+ "trigger_word": trigger_word
196
+ }
197
+ print(new_item)
198
+ existing_item_index = len(loras)
199
+ loras.append(new_item)
200
+
201
+ return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
202
+ except Exception as e:
203
+ gr.Warning(f"Invalid LoRA: either you entered an invalid link, or a non-FLUX LoRA")
204
+ return gr.update(visible=True, value=f"Invalid LoRA: either you entered an invalid link, a non-FLUX LoRA"), gr.update(visible=True), gr.update(), "", None, ""
205
+ else:
206
+ return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
207
+
208
+ def remove_custom_lora():
209
+ return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
210
+
211
+ run_lora.zerogpu = True
212
+
213
+ css = """
214
+ footer {
215
+ visibility: hidden;
216
+ }
217
+ """
218
+
219
+ with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as app:
220
+
221
+ selected_index = gr.State(None)
222
+ with gr.Row():
223
+ with gr.Column(scale=3):
224
+ prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
225
+ with gr.Column(scale=1, elem_id="gen_column"):
226
+ generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
227
+ with gr.Row():
228
+ with gr.Column():
229
+ selected_info = gr.Markdown("")
230
+ gallery = gr.Gallery(
231
+ [(item["image"], item["title"]) for item in loras],
232
+ label="LoRA Gallery",
233
+ allow_preview=False,
234
+ columns=3,
235
+ elem_id="gallery"
236
+ )
237
+ with gr.Group():
238
+ custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path", placeholder="multimodalart/vintage-ads-flux")
239
+ gr.Markdown("[Check the list of FLUX LoRas](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
240
+ custom_lora_info = gr.HTML(visible=False)
241
+ custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
242
+ with gr.Column():
243
+ progress_bar = gr.Markdown(elem_id="progress",visible=False)
244
+ result = gr.Image(label="Generated Image")
245
+
246
+ with gr.Row():
247
+ with gr.Accordion("Advanced Settings", open=False):
248
+ with gr.Column():
249
+ with gr.Row():
250
+ cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
251
+ steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
252
+
253
+ with gr.Row():
254
+ width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
255
+ height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
256
+
257
+ with gr.Row():
258
+ randomize_seed = gr.Checkbox(True, label="Randomize seed")
259
+ seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
260
+ lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=3, step=0.01, value=0.95)
261
+
262
+ gallery.select(
263
+ update_selection,
264
+ inputs=[width, height],
265
+ outputs=[prompt, selected_info, selected_index, width, height]
266
+ )
267
+ custom_lora.input(
268
+ add_custom_lora,
269
+ inputs=[custom_lora],
270
+ outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
271
+ )
272
+ custom_lora_button.click(
273
+ remove_custom_lora,
274
+ outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
275
+ )
276
+ gr.on(
277
+ triggers=[generate_button.click, prompt.submit],
278
+ fn=run_lora,
279
+ inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale],
280
+ outputs=[result, seed, progress_bar]
281
+ )
282
+
283
+ app.queue()
284
+ app.launch()