import os
import gradio as gr
import json
import logging
import torch
from PIL import Image
import spaces
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
import copy
import random
import time
from transformers import pipeline
# 번역 모델 초기화
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
# 프롬프트 처리 함수 추가
def process_prompt(prompt):
if any('\u3131' <= char <= '\u3163' or '\uac00' <= char <= '\ud7a3' for char in prompt):
translated = translator(prompt)[0]['translation_text']
return prompt, translated
return prompt, prompt
KEY_JSON = os.getenv("KEY_JSON")
with open(KEY_JSON, 'r') as f:
loras = json.load(f)
# Initialize the base model
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
base_model = "black-forest-labs/FLUX.1-dev"
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
MAX_SEED = 2**32-1
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
class calculateDuration:
def __init__(self, activity_name=""):
self.activity_name = activity_name
def __enter__(self):
self.start_time = time.time()
return self
def __exit__(self, exc_type, exc_value, traceback):
self.end_time = time.time()
self.elapsed_time = self.end_time - self.start_time
if self.activity_name:
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
else:
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
def update_selection(evt: gr.SelectData, width, height):
selected_lora = loras[evt.index]
new_placeholder = f"{selected_lora['title']}를 위한 프롬프트를 입력하세요"
lora_repo = selected_lora["repo"]
updated_text = f"### 선택됨: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
if "aspect" in selected_lora:
if selected_lora["aspect"] == "portrait":
width = 768
height = 1024
elif selected_lora["aspect"] == "landscape":
width = 1024
height = 768
else:
width = 1024
height = 1024
return (
gr.update(placeholder=new_placeholder),
updated_text,
evt.index,
width,
height,
)
@spaces.GPU(duration=70)
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress):
pipe.to("cuda")
generator = torch.Generator(device="cuda").manual_seed(seed)
with calculateDuration("이미지 생성"):
# Generate image
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
prompt=prompt_mash,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
output_type="pil",
good_vae=good_vae,
):
yield img
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
if selected_index is None:
raise gr.Error("진행하기 전에 LoRA를 선택해야 합니다.")
original_prompt, english_prompt = process_prompt(prompt)
selected_lora = loras[selected_index]
lora_path = selected_lora["repo"]
trigger_word = selected_lora["trigger_word"]
if(trigger_word):
if "trigger_position" in selected_lora:
if selected_lora["trigger_position"] == "prepend":
prompt_mash = f"{trigger_word} {english_prompt}"
else:
prompt_mash = f"{english_prompt} {trigger_word}"
else:
prompt_mash = f"{trigger_word} {english_prompt}"
else:
prompt_mash = english_prompt
with calculateDuration("LoRA 언로드"):
pipe.unload_lora_weights()
# Load LoRA weights
with calculateDuration(f"{selected_lora['title']}의 LoRA 가중치 로드"):
if "weights" in selected_lora:
pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"])
else:
pipe.load_lora_weights(lora_path)
# Set random seed for reproducibility
with calculateDuration("시드 무작위화"):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress)
# Consume the generator to get the final image
final_image = None
step_counter = 0
for image in image_generator:
step_counter+=1
final_image = image
progress_bar = f'
'
yield image, seed, gr.update(value=progress_bar, visible=True), original_prompt, english_prompt
yield final_image, seed, gr.update(value=progress_bar, visible=False), original_prompt, english_prompt
def get_huggingface_safetensors(link):
split_link = link.split("/")
if(len(split_link) == 2):
model_card = ModelCard.load(link)
base_model = model_card.data.get("base_model")
print(base_model)
if((base_model != "black-forest-labs/FLUX.1-dev") and (base_model != "black-forest-labs/FLUX.1-schnell")):
raise Exception("Not a FLUX LoRA!")
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
trigger_word = model_card.data.get("instance_prompt", "")
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
fs = HfFileSystem()
try:
list_of_files = fs.ls(link, detail=False)
for file in list_of_files:
if(file.endswith(".safetensors")):
safetensors_name = file.split("/")[-1]
if (not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp"))):
image_elements = file.split("/")
image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
except Exception as e:
print(e)
gr.Warning(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
raise Exception(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
return split_link[1], link, safetensors_name, trigger_word, image_url
def check_custom_model(link):
if(link.startswith("https://")):
if(link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co")):
link_split = link.split("huggingface.co/")
return get_huggingface_safetensors(link_split[1])
else:
return get_huggingface_safetensors(link)
def add_custom_lora(custom_lora):
global loras
if(custom_lora):
try:
title, repo, path, trigger_word, image = check_custom_model(custom_lora)
print(f"Loaded custom LoRA: {repo}")
card = f'''
Loaded custom LoRA:
{title}
{"Using: "+trigger_word+"
as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}
'''
existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
if(not existing_item_index):
new_item = {
"image": image,
"title": title,
"repo": repo,
"weights": path,
"trigger_word": trigger_word
}
print(new_item)
existing_item_index = len(loras)
loras.append(new_item)
return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
except Exception as e:
gr.Warning(f"Invalid LoRA: either you entered an invalid link, or a non-FLUX LoRA")
return gr.update(visible=True, value=f"Invalid LoRA: either you entered an invalid link, a non-FLUX LoRA"), gr.update(visible=True), gr.update(), "", None, ""
else:
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
def remove_custom_lora():
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
run_lora.zerogpu = True
css = """
footer {
visibility: hidden;
}
"""
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as app:
selected_index = gr.State(None)
with gr.Row():
with gr.Column(scale=3):
prompt = gr.Textbox(label="프롬프트", lines=1, placeholder="LoRA를 선택한 후 프롬프트를 입력하세요 (한글 또는 영어)")
with gr.Column(scale=1, elem_id="gen_column"):
generate_button = gr.Button("생성", variant="primary", elem_id="gen_btn")
with gr.Row():
with gr.Column():
selected_info = gr.Markdown("")
gallery = gr.Gallery(
[(item["image"], item["title"]) for item in loras],
label="LoRA 갤러리",
allow_preview=False,
columns=3,
elem_id="gallery"
)
with gr.Group():
custom_lora = gr.Textbox(label="커스텀 LoRA", info="LoRA Hugging Face 경로", placeholder="multimodalart/vintage-ads-flux")
gr.Markdown("[FLUX LoRA 목록 확인](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
custom_lora_info = gr.HTML(visible=False)
custom_lora_button = gr.Button("커스텀 LoRA 제거", visible=False)
with gr.Column():
progress_bar = gr.Markdown(elem_id="progress",visible=False)
result = gr.Image(label="생성된 이미지")
original_prompt_display = gr.Textbox(label="원본 프롬프트")
english_prompt_display = gr.Textbox(label="영어 프롬프트")
with gr.Row():
with gr.Accordion("고급 설정", open=False):
with gr.Column():
with gr.Row():
cfg_scale = gr.Slider(label="CFG 스케일", minimum=1, maximum=20, step=0.5, value=3.5)
steps = gr.Slider(label="스텝", minimum=1, maximum=50, step=1, value=28)
with gr.Row():
width = gr.Slider(label="너비", minimum=256, maximum=1536, step=64, value=1024)
height = gr.Slider(label="높이", minimum=256, maximum=1536, step=64, value=1024)
with gr.Row():
randomize_seed = gr.Checkbox(True, label="시드 무작위화")
seed = gr.Slider(label="시드", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
lora_scale = gr.Slider(label="LoRA 스케일", minimum=0, maximum=3, step=0.01, value=0.95)
gallery.select(
update_selection,
inputs=[width, height],
outputs=[prompt, selected_info, selected_index, width, height]
)
custom_lora.input(
add_custom_lora,
inputs=[custom_lora],
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
)
custom_lora_button.click(
remove_custom_lora,
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
)
gr.on(
triggers=[generate_button.click, prompt.submit],
fn=run_lora,
inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale],
outputs=[result, seed, progress_bar, original_prompt_display, english_prompt_display]
)
app.queue()
app.launch()