Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,33 +1,82 @@
|
|
1 |
-
import os
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
-
from transformers import
|
5 |
-
from utils import
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
examples = [
|
12 |
-
[
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
]
|
16 |
|
17 |
|
18 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
labels = labels_text.split(",")
|
21 |
-
|
22 |
-
frames = sample_frames_from_video_file(
|
23 |
-
|
24 |
-
|
|
|
25 |
|
26 |
inputs = processor(
|
27 |
-
text=labels,
|
28 |
-
videos=list(frames),
|
29 |
-
return_tensors="pt",
|
30 |
-
padding=True
|
31 |
)
|
32 |
# forward pass
|
33 |
with torch.no_grad():
|
@@ -37,12 +86,15 @@ def predict(youtube_url, labels_text):
|
|
37 |
label_to_prob = {}
|
38 |
for ind, label in enumerate(labels):
|
39 |
label_to_prob[label] = float(probs[ind])
|
40 |
-
|
41 |
return label_to_prob, gif_path
|
42 |
|
|
|
43 |
app = gr.Blocks()
|
44 |
with app:
|
45 |
-
gr.Markdown(
|
|
|
|
|
46 |
gr.Markdown(
|
47 |
"""
|
48 |
<p style='text-align: center'>
|
@@ -54,24 +106,63 @@ with app:
|
|
54 |
|
55 |
with gr.Row():
|
56 |
with gr.Column():
|
57 |
-
gr.
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
with gr.Column():
|
62 |
-
video_gif = gr.Image(
|
|
|
|
|
|
|
63 |
with gr.Column():
|
64 |
-
predictions = gr.Label(label=
|
65 |
|
66 |
gr.Markdown("**Examples:**")
|
67 |
-
gr.Examples(
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
gr.Markdown(
|
71 |
"""
|
72 |
-
\n Demo created by: <a href=\"https://github.com/fcakyon\">fcakyon</a
|
73 |
-
<br> Based on this <a href=\"https://huggingface.co/
|
74 |
"""
|
75 |
)
|
76 |
-
|
77 |
app.launch()
|
|
|
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
+
from transformers import AutoProcessor, AutoModel
|
4 |
+
from utils import (
|
5 |
+
convert_frames_to_gif,
|
6 |
+
download_youtube_video,
|
7 |
+
get_num_total_frames,
|
8 |
+
sample_frames_from_video_file,
|
9 |
+
)
|
10 |
|
11 |
+
FRAME_SAMPLING_RATE = 4
|
12 |
+
DEFAULT_MODEL = "microsoft/xclip-base-patch16-zero-shot"
|
13 |
+
|
14 |
+
VALID_ZEROSHOT_VIDEOCLASSIFICATION_MODELS = [
|
15 |
+
"microsoft/xclip-base-patch32",
|
16 |
+
"microsoft/xclip-base-patch16-zero-shot",
|
17 |
+
"microsoft/xclip-base-patch16-kinetics-600",
|
18 |
+
"microsoft/xclip-large-patch14ft/xclip-base-patch32-16-frames",
|
19 |
+
"microsoft/xclip-large-patch14",
|
20 |
+
"microsoft/xclip-base-patch16-hmdb-4-shot",
|
21 |
+
"microsoft/xclip-base-patch16-16-frames",
|
22 |
+
"microsoft/xclip-base-patch16-hmdb-2-shot",
|
23 |
+
"microsoft/xclip-base-patch16-ucf-2-shot",
|
24 |
+
"microsoft/xclip-base-patch16-ucf-8-shot",
|
25 |
+
"microsoft/xclip-base-patch16",
|
26 |
+
"microsoft/xclip-base-patch16-hmdb-8-shot",
|
27 |
+
"microsoft/xclip-base-patch16-hmdb-16-shot",
|
28 |
+
"microsoft/xclip-base-patch16-ucf-16-shot",
|
29 |
+
]
|
30 |
+
|
31 |
+
processor = AutoProcessor.from_pretrained(DEFAULT_MODEL)
|
32 |
+
model = AutoModel.from_pretrained(DEFAULT_MODEL)
|
33 |
|
34 |
examples = [
|
35 |
+
[
|
36 |
+
"https://www.youtu.be/l1dBM8ZECao",
|
37 |
+
"sleeping dog,cat fight club,birds of prey",
|
38 |
+
],
|
39 |
+
[
|
40 |
+
"https://youtu.be/VMj-3S1tku0",
|
41 |
+
"programming course,eating spaghetti,playing football",
|
42 |
+
],
|
43 |
+
[
|
44 |
+
"https://www.youtu.be/x8UAUAuKNcU",
|
45 |
+
"game of thrones,the lord of the rings,vikings",
|
46 |
+
],
|
47 |
]
|
48 |
|
49 |
|
50 |
+
def select_model(model_name):
|
51 |
+
global processor, model
|
52 |
+
processor = AutoProcessor.from_pretrained(model_name)
|
53 |
+
model = AutoModel.from_pretrained(model_name)
|
54 |
+
|
55 |
+
|
56 |
+
def predict(youtube_url_or_file_path, labels_text):
|
57 |
+
|
58 |
+
if youtube_url_or_file_path.startswith("http"):
|
59 |
+
video_path = download_youtube_video(youtube_url_or_file_path)
|
60 |
+
else:
|
61 |
+
video_path = youtube_url_or_file_path
|
62 |
+
|
63 |
+
# rearrange sampling rate based on video length and model input length
|
64 |
+
num_total_frames = get_num_total_frames(video_path)
|
65 |
+
num_model_input_frames = model.config.vision_config.num_frames
|
66 |
+
if num_total_frames < FRAME_SAMPLING_RATE * num_model_input_frames:
|
67 |
+
frame_sampling_rate = num_total_frames // num_model_input_frames
|
68 |
+
else:
|
69 |
+
frame_sampling_rate = FRAME_SAMPLING_RATE
|
70 |
|
71 |
labels = labels_text.split(",")
|
72 |
+
|
73 |
+
frames = sample_frames_from_video_file(
|
74 |
+
video_path, num_model_input_frames, frame_sampling_rate
|
75 |
+
)
|
76 |
+
gif_path = convert_frames_to_gif(frames, save_path="video.gif")
|
77 |
|
78 |
inputs = processor(
|
79 |
+
text=labels, videos=list(frames), return_tensors="pt", padding=True
|
|
|
|
|
|
|
80 |
)
|
81 |
# forward pass
|
82 |
with torch.no_grad():
|
|
|
86 |
label_to_prob = {}
|
87 |
for ind, label in enumerate(labels):
|
88 |
label_to_prob[label] = float(probs[ind])
|
89 |
+
|
90 |
return label_to_prob, gif_path
|
91 |
|
92 |
+
|
93 |
app = gr.Blocks()
|
94 |
with app:
|
95 |
+
gr.Markdown(
|
96 |
+
"# **<p align='center'>Zero-shot Video Classification with 🤗 Transformers</p>**"
|
97 |
+
)
|
98 |
gr.Markdown(
|
99 |
"""
|
100 |
<p style='text-align: center'>
|
|
|
106 |
|
107 |
with gr.Row():
|
108 |
with gr.Column():
|
109 |
+
model_names_dropdown = gr.Dropdown(
|
110 |
+
choices=VALID_ZEROSHOT_VIDEOCLASSIFICATION_MODELS,
|
111 |
+
label="Model:",
|
112 |
+
show_label=True,
|
113 |
+
value=DEFAULT_MODEL,
|
114 |
+
)
|
115 |
+
model_names_dropdown.change(fn=select_model, inputs=model_names_dropdown)
|
116 |
+
with gr.Tab(label="Youtube URL"):
|
117 |
+
gr.Markdown(
|
118 |
+
"### **Provide a Youtube video URL and a list of labels separated by commas**"
|
119 |
+
)
|
120 |
+
youtube_url = gr.Textbox(label="Youtube URL:", show_label=True)
|
121 |
+
youtube_url_labels_text = gr.Textbox(
|
122 |
+
label="Labels Text:", show_label=True
|
123 |
+
)
|
124 |
+
youtube_url_predict_btn = gr.Button(value="Predict")
|
125 |
+
with gr.Tab(label="Local File"):
|
126 |
+
gr.Markdown(
|
127 |
+
"### **Upload a video file and provide a list of labels separated by commas**"
|
128 |
+
)
|
129 |
+
video_file = gr.Video(label="Video File:", show_label=True)
|
130 |
+
local_video_labels_text = gr.Textbox(
|
131 |
+
label="Labels Text:", show_label=True
|
132 |
+
)
|
133 |
+
local_video_predict_btn = gr.Button(value="Predict")
|
134 |
with gr.Column():
|
135 |
+
video_gif = gr.Image(
|
136 |
+
label="Input Clip",
|
137 |
+
show_label=True,
|
138 |
+
)
|
139 |
with gr.Column():
|
140 |
+
predictions = gr.Label(label="Predictions:", show_label=True)
|
141 |
|
142 |
gr.Markdown("**Examples:**")
|
143 |
+
gr.Examples(
|
144 |
+
examples,
|
145 |
+
[youtube_url, youtube_url_labels_text],
|
146 |
+
[predictions, video_gif],
|
147 |
+
fn=predict,
|
148 |
+
cache_examples=False,
|
149 |
+
)
|
150 |
|
151 |
+
youtube_url_predict_btn.click(
|
152 |
+
predict,
|
153 |
+
inputs=[youtube_url, youtube_url_labels_text],
|
154 |
+
outputs=[predictions, video_gif],
|
155 |
+
)
|
156 |
+
local_video_predict_btn.click(
|
157 |
+
predict,
|
158 |
+
inputs=[video_file, local_video_labels_text],
|
159 |
+
outputs=[predictions, video_gif],
|
160 |
+
)
|
161 |
gr.Markdown(
|
162 |
"""
|
163 |
+
\n Demo created by: <a href=\"https://github.com/fcakyon\">fcakyon</a>.
|
164 |
+
<br> Based on this <a href=\"https://huggingface.co/docs/transformers/main/model_doc/xclip">HuggingFace model</a>.
|
165 |
"""
|
166 |
)
|
167 |
+
|
168 |
app.launch()
|