File size: 2,008 Bytes
9cc6120
 
 
 
 
 
 
 
 
 
3f8b25a
d98f44c
3f8b25a
9cc6120
ceefc61
4125eca
9cc6120
4125eca
 
9cc6120
 
 
 
 
4125eca
9cc6120
b3aaee8
9cc6120
dd2b90d
9cc6120
4125eca
9cc6120
 
 
 
 
 
 
 
2bad840
9cc6120
2bad840
a6fde97
2bad840
86da822
 
 
 
a6fde97
 
86da822
 
 
2bad840
a6fde97
 
 
 
 
 
9cc6120
2bad840
9cc6120
2bad840
9cc6120
86da822
9cc6120
2bad840
9cc6120
2bad840
9cc6120
86da822
9cc6120
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
title: Feel
emoji: πŸš€
colorFrom: blue
colorTo: gray
sdk: gradio
sdk_version: 5.8.0
app_file: app/app.py
pinned: false
---

# Feel

This is a project to create a continuous training application.

Platform being developed at MIT in collaboration with HuggingFace. Aimed at improving performance of existing Large Language Models through real-time human feedback loop.

This repository hosts the development of an automated RLHF platform for Hugging Face, where the community can provide real-time feedback on language models. The feedback is automatically integrated into an RLHF pipeline to continuously fine-tune and improve the models.

## What is Feel?

A community-driven project to improve Multilingual Vision-Language Models (VLMs). Leverages feedback from users and automated RLHF pipelines to continuously improve model performance.

## Why Feel?

Feel is a platform that enables the community to provide real-time feedback on language models. The feedback is automatically integrated into an RLHF pipeline to continuously fine-tune and improve the models.

## Repository Structure

The repository is organized as follows:

```
ml/                # Directory for machine learning code
β”œβ”€β”€ README.md      # Dataset schema and project structure
β”œβ”€β”€ data/          # Directory for dataset files
β”œβ”€β”€ models/        # Directory for model files
app/               # Directory for application code
β”œβ”€β”€ app.py         # Main application file
```

## Installation

The repository uses `uv` for managing virtual environments. To install `uv`, go [here](https://docs.astral.sh/uv/getting-started/installation/). Create a virtual environment.

```bash
uv venv --python 3.11
```

Activate the virtual environment

```bash
source .venv/bin/activate
```

Sync the dependencies

```bash
uv sync --all-groups
```

To install the required dependencies, run the following commands:

### ML Dependencies

```bash
uv sync --group ml
```

### App Dependencies

```bash
uv sync --group app
```