File size: 8,071 Bytes
04f923c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import sys
import os
from typing import Any, Dict, List
import torch
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModelForSequenceClassification
from accelerate import Accelerator
from trl import KTOConfig, KTOTrainer, ModelConfig, get_peft_config, maybe_unpair_preference_dataset, setup_chat_format
from tqdm import tqdm
# Add script directory to system path for importing local modules
SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.dirname(SCRIPT_DIR))
from eval.utils import jload, jdump
from eval.evaluate_arguments import EvalArguments
# set `device` to "cuda" if a GPU is available. otherwise, defaults to CPU
device = "cuda" if torch.cuda.is_available() else "cpu"
def create_model():
# loads a specified reward model and sets it to use the GPU ("cuda")
# CHANGE FUNCTION DEPENDING OF THE MODEL YOU LOAD
model = AutoModelForSequenceClassification.from_pretrained("Skywork/Skywork-Reward-Llama-3.1-8B-v0.2", torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", num_labels=1).to("cuda")
return model
def create_tokenizer():
# loads the tokenizer that pairs with the model for encoding the text data
tokenizer = AutoTokenizer.from_pretrained("Skywork/Skywork-Reward-Llama-3.1-8B-v0.2", use_auth_token=True)
return tokenizer
def MyAccelerator(mixed_precision):
# wrap `Accelerator` to set up model handling with mixed-precision (to save memory)
accelerator = Accelerator(mixed_precision=mixed_precision)
return accelerator
#####################################
# Idan's script from here
#####################################
def main():
# Parse evaluation arguments from `EvalArguments`
parser = transformers.HfArgumentParser((EvalArguments, ))
args, = parser.parse_args_into_dataclasses()
# set `mixed_precision` based on `args.bfloat16` (if true use bf16, otherwise fp16)
mixed_precision = 'bf16' if args.bfloat16 else 'fp16'
args.mixed_precision = mixed_precision
# initialize `MyAccelerator` with the chosen mixed precision setting
accelerator = MyAccelerator(
mixed_precision=mixed_precision,
)
# load model and tokenizer
model = create_model()
if 't5' not in args.model_name_or_path:
# t5 models where trained with fp32
model = accelerator.prepare(model)
model.eval()
tokenizer = create_tokenizer()
print("Output file path:", args.output_filepath)
# load LM generations data from `args.output_filepath` + handles cases where it’s a single file or directory.
filenames = []
eval_data_list_dict = []
if os.path.isfile(args.output_filepath):
print(f'Loading data from {args.output_filepath}...')
eval_data_list_dict.append(jload(args.output_filepath))
filenames.append(args.output_filepath)
elif os.path.isdir(args.output_filepath):
print(f'Loading data from {args.output_filepath}...')
for filename in os.listdir(args.output_filepath):
if filename.endswith('.json'):
print(f'Loaded file {filename}')
eval_data_list_dict.append(jload(os.path.join(args.output_filepath, filename)))
filenames.append(os.path.join(args.output_filepath, filename))
else:
raise Exception('Output file(s) not found!')
# process each file and call `evaluate_data()` to calculate reward scores
for filename, eval_data_dict in zip(filenames, eval_data_list_dict):
eval_data = evaluate_data(args, model, tokenizer, eval_data_dict)
if args.result_filename is None:
path_to_result = os.path.basename(filename).split('.json')[0] + f"_reward_{args.model_name_or_path.replace('/', '')}.json"
else:
path_to_result = args.result_filename
print(f'Saving results to file {path_to_result}...')
jdump(eval_data, path_to_result)
def get_reward_output_fn(reward_output_fmt: str, apply_sigmoid_to_reward: bool):
# defines the reward output function format based on `reward_output_fmt`
if reward_output_fmt is None:
reward_output_fn = lambda x: x.squeeze().cpu().detach().numpy().tolist()
elif reward_output_fmt == '0':
reward_output_fn = lambda x: x.squeeze().cpu().detach().softmax(dim=-1).numpy()[0].tolist()
elif reward_output_fmt == '1':
reward_output_fn = lambda x: x.squeeze().cpu().detach().softmax(dim=-1).numpy()[1].tolist()
elif reward_output_fmt == '1-0':
reward_output_fn = lambda x: (x.squeeze().cpu().detach().softmax(dim=-1).numpy()[1] - x.squeeze().cpu().detach().softmax(dim=-1).numpy()[0]).tolist()
else:
raise NotImplementedError(f'Unsupported reward output format: {reward_output_fmt}')
# Apply sigmoid transformation if `apply_sigmoid_to_reward` is true
if apply_sigmoid_to_reward:
reward_output_fn = lambda x: torch.sigmoid(torch.tensor(x)).numpy().tolist()
return reward_output_fn
@torch.inference_mode()
def evaluate_data(args: EvalArguments, model, tokenizer, eval_data_list_dict) -> List[Dict[str, Any]]:
"""Given a generated dataset, evaluate it using the reward model
args: argparse.Namespace, the arguments to use
reward_model: reward_model_module.RewardModel, the reward model to use
eval_data_list_dict: List[Dict[str, Any]], the generated data to evaluate
"""
pbar = tqdm(total=len(eval_data_list_dict), desc="eval")
rewards_list = []
reward_output_fn = get_reward_output_fn(args.reward_output_fmt, args.apply_sigmoid_to_reward)
print('Evaluating reward scores...')
# Split `eval_data_list_dict` into batches for processing
for idx in range(0, len(eval_data_list_dict), args.per_device_batch_size):
if len(eval_data_list_dict) > (idx + args.per_device_batch_size):
batch_list_dict = eval_data_list_dict[idx:idx+args.per_device_batch_size]
else:
batch_list_dict = eval_data_list_dict[idx:]
# create formatted text from prompts and outputs for tokenization
if 'prompt' in batch_list_dict[0]:
batch_full_outputs = [l['prompt'] + ' ' + l['output'] for l in batch_list_dict]
else:
print('Overriding with custom prompt format')
prompt_fmt = "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response: {output}"
for l in batch_list_dict:
l['output'] = l['output'].split('.')[0] + '.'
batch_full_outputs = [prompt_fmt.format_map(l) for l in batch_list_dict]
# tokenize and send the batched text to the model’s device
encoded_full_responses = tokenizer(batch_full_outputs, return_tensors="pt", padding=True, truncation=True)
encoded_full_responses = encoded_full_responses.to(model.device) # i added this
# generate reward scores and stores them in `rewards_list`
reward_outputs = model(**encoded_full_responses)
rewards = reward_output_fn(reward_outputs.logits)
rewards_list.extend(rewards if isinstance(rewards, list) else [rewards])
# update progress bar after each batch is processed
pbar.update(len(batch_list_dict))
print('Combining reward outputs into outputs...')
# add calculated rewards to each item in `eval_data_list_dict`
for j in range(len(eval_data_list_dict)):
eval_data_list_dict[j]['reward'] = rewards_list[j]
eval_data_list_dict[j]['reward_model'] = args.model_name_or_path + args.model_pretrained_lora_weights if args.model_pretrained_lora_weights is not None else args.model_name_or_path
print('Finished evaluating reward scores!')
print('Mean reward score: ', sum(rewards_list) / len(rewards_list))
print('Std reward score: ', torch.tensor(rewards_list).std().item())
return eval_data_list_dict
if __name__ == '__main__':
main()
|