File size: 13,566 Bytes
9cc6120 9109509 9cc6120 9109509 9cc6120 7ed0603 8880b78 9cc6120 0cba459 6ea04d8 9cc6120 6ea04d8 0cba459 6ea04d8 104bc54 9cc6120 d39610d 195ed03 d39610d 195ed03 d39610d 9cc6120 195ed03 9cc6120 c39cd57 9cc6120 c39cd57 9cc6120 7ccbe37 8880b78 9109509 7ccbe37 9109509 8880b78 9109509 7ccbe37 104bc54 9109509 104bc54 9109509 104bc54 9cc6120 9109509 9cc6120 9109509 8880b78 9109509 9cc6120 104bc54 9cc6120 8880b78 9cc6120 8880b78 9cc6120 94c1e6b 9cc6120 8880b78 9cc6120 94c1e6b 9cc6120 8880b78 7ccbe37 8880b78 9109509 104bc54 8880b78 9109509 8880b78 16f921a 8880b78 9109509 8880b78 9109509 8880b78 16f921a 8880b78 7ccbe37 8880b78 9109509 7ccbe37 9109509 8880b78 9109509 8880b78 104bc54 7ccbe37 9cc6120 7ccbe37 9cc6120 16f921a 9cc6120 16f921a 9cc6120 7ccbe37 9cc6120 7ccbe37 9cc6120 8880b78 16f921a 8880b78 9cc6120 ae49850 7ed0603 ae49850 0cba459 ae49850 9cc6120 104bc54 9cc6120 6ea04d8 0cba459 6ea04d8 9cc6120 104bc54 9cc6120 ae49850 9cc6120 9109509 ae49850 9cc6120 6ea04d8 9109509 8880b78 9cc6120 104bc54 9109509 7ccbe37 8880b78 104bc54 7ccbe37 104bc54 8880b78 104bc54 9109509 9cc6120 7ccbe37 9cc6120 195ed03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
import os
import random
import uuid
from base64 import b64encode
from datetime import datetime
from mimetypes import guess_type
from pathlib import Path
from typing import Optional
import gradio as gr
from feedback import save_feedback, scheduler
from gradio.components.chatbot import Option
from huggingface_hub import InferenceClient
from pandas import DataFrame
LANGUAGES: dict[str, str] = {
"English": "You are a helpful assistant that speaks English.",
"Spanish": "Tu eres un asistente útil que habla español.",
"Hebrew": "אתה עוזר טוב שמפגש בעברית.",
"Dutch": "Je bent een handige assistent die Nederlands spreekt.",
"Italian": "Tu sei un assistente utile che parla italiano.",
"French": "Tu es un assistant utile qui parle français.",
"German": "Du bist ein hilfreicher Assistent, der Deutsch spricht.",
"Portuguese": "Você é um assistente útil que fala português.",
"Russian": "Ты полезный помощник, который говорит по-русски.",
"Chinese": "你是一个有用的助手,会说中文。",
"Japanese": "あなたは役立つ助け役で、日本語を話します。",
"Korean": "당신은 유용한 도우미이며 한국어를 말합니다.",
}
client = InferenceClient(
token=os.getenv("HF_TOKEN"),
model=(
os.getenv("MODEL", "meta-llama/Llama-3.2-11B-Vision-Instruct")
if not os.getenv("BASE_URL")
else None
),
base_url=os.getenv("BASE_URL"),
)
def add_user_message(history, message):
for x in message["files"]:
history.append({"role": "user", "content": {"path": x}})
if message["text"] is not None:
history.append({"role": "user", "content": message["text"]})
return history, gr.MultimodalTextbox(value=None, interactive=False)
def format_system_message(language: str, history: list):
if history:
if history[0]["role"] == "system":
history = history[1:]
system_message = [
{
"role": "system",
"content": LANGUAGES[language],
}
]
history = system_message + history
return history
def format_history_as_messages(history: list):
messages = []
current_role = None
current_message_content = []
for entry in history:
content = entry["content"]
if entry["role"] != current_role:
if current_role is not None:
messages.append(
{"role": current_role, "content": current_message_content}
)
current_role = entry["role"]
current_message_content = []
if isinstance(content, tuple): # Handle file paths
for temp_path in content:
if space_host := os.getenv("SPACE_HOST"):
url = f"https://{space_host}/gradio_api/file%3D{temp_path}"
else:
url = _convert_path_to_data_uri(temp_path)
current_message_content.append(
{"type": "image_url", "image_url": {"url": url}}
)
elif isinstance(content, str): # Handle text
current_message_content.append({"type": "text", "text": content})
if current_role is not None:
messages.append({"role": current_role, "content": current_message_content})
return messages
def _convert_path_to_data_uri(path) -> str:
mime_type, _ = guess_type(path)
with open(path, "rb") as image_file:
data = image_file.read()
data_uri = f"data:{mime_type};base64," + b64encode(data).decode("utf-8")
return data_uri
def _is_file_safe(path) -> bool:
try:
return Path(path).is_file()
except Exception:
return ""
def _process_content(content) -> str | list[str]:
if isinstance(content, str) and _is_file_safe(content):
return _convert_path_to_data_uri(content)
elif isinstance(content, list) or isinstance(content, tuple):
return _convert_path_to_data_uri(content[0])
return content
def add_fake_like_data(
history: list, session_id: str, language: str, liked: bool = False
) -> None:
data = {
"index": len(history) - 1,
"value": history[-1],
"liked": liked,
}
_, dataframe = wrangle_like_data(
gr.LikeData(target=None, data=data), history.copy()
)
submit_conversation(dataframe, session_id, language)
def respond_system_message(
history: list, temperature: Optional[float] = None, seed: Optional[int] = None
) -> list: # -> list:
"""Respond to the user message with a system message
Return the history with the new message"""
messages = format_history_as_messages(history)
response = client.chat.completions.create(
messages=messages,
max_tokens=2000,
stream=False,
seed=seed,
temperature=temperature,
)
content = response.choices[0].message.content
message = gr.ChatMessage(role="assistant", content=content)
history.append(message)
return history
def update_dataframe(dataframe: DataFrame, history: list) -> DataFrame:
"""Update the dataframe with the new message"""
data = {
"index": 9999,
"value": None,
"liked": False,
}
_, dataframe = wrangle_like_data(
gr.LikeData(target=None, data=data), history.copy()
)
return dataframe
def wrangle_like_data(x: gr.LikeData, history) -> DataFrame:
"""Wrangle conversations and liked data into a DataFrame"""
if isinstance(x.index, int):
liked_index = x.index
else:
liked_index = x.index[0]
output_data = []
for idx, message in enumerate(history):
if isinstance(message, gr.ChatMessage):
message = message.__dict__
if idx == liked_index:
message["metadata"] = {"title": "liked" if x.liked else "disliked"}
if not isinstance(message["metadata"], dict):
message["metadata"] = message["metadata"].__dict__
rating = message["metadata"].get("title")
if rating == "liked":
message["rating"] = 1
elif rating == "disliked":
message["rating"] = -1
else:
message["rating"] = 0
message["chosen"] = ""
message["rejected"] = ""
if message["options"]:
for option in message["options"]:
if not isinstance(option, dict):
option = option.__dict__
message[option["label"]] = option["value"]
else:
if message["rating"] == 1:
message["chosen"] = message["content"]
elif message["rating"] == -1:
message["rejected"] = message["content"]
output_data.append(
dict(
[(k, v) for k, v in message.items() if k not in ["metadata", "options"]]
)
)
return history, DataFrame(data=output_data)
def wrangle_edit_data(
x: gr.EditData, history: list, dataframe: DataFrame, session_id: str, language: str
) -> list:
"""Edit the conversation and add negative feedback if assistant message is edited, otherwise regenerate the message
Return the history with the new message"""
if isinstance(x.index, int):
index = x.index
else:
index = x.index[0]
original_message = gr.ChatMessage(
role="assistant", content=dataframe.iloc[index]["content"]
).__dict__
if history[index]["role"] == "user":
# Add feedback on original and corrected message
add_fake_like_data(history[: index + 2], session_id, language, liked=True)
add_fake_like_data(
history[: index + 1] + [original_message], session_id, language
)
history = respond_system_message(
history[: index + 1],
temperature=random.randint(1, 100) / 100,
seed=random.randint(0, 1000000),
)
return history
else:
# Add feedback on original and corrected message
add_fake_like_data(history[: index + 1], session_id, language, liked=True)
add_fake_like_data(history[:index] + [original_message], session_id, language)
history = history[: index + 1]
# add chosen and rejected options
history[-1]["options"] = [
Option(label="chosen", value=x.value),
Option(label="rejected", value=original_message["content"]),
]
return history
def wrangle_retry_data(
x: gr.RetryData, history: list, dataframe: DataFrame, session_id: str, language: str
) -> list:
"""Respond to the user message with a system message and add negative feedback on the original message
Return the history with the new message"""
add_fake_like_data(history, session_id, language)
# Return the history without a new message
history = respond_system_message(
history[:-1],
temperature=random.randint(1, 100) / 100,
seed=random.randint(0, 1000000),
)
return history, update_dataframe(dataframe, history)
def submit_conversation(dataframe, session_id, language):
""" "Submit the conversation to dataset repo"""
if dataframe.empty or len(dataframe) < 2:
gr.Info("No feedback to submit.")
return (gr.Dataframe(value=None, interactive=False), [])
dataframe["content"] = dataframe["content"].apply(_process_content)
conversation = dataframe.to_dict(orient="records")
conversation_data = {
"conversation": conversation,
"timestamp": datetime.now().isoformat(),
"session_id": session_id,
"conversation_id": str(uuid.uuid4()),
"language": language,
}
save_feedback(input_object=conversation_data)
gr.Info("Submitted your feedback!")
return (gr.Dataframe(value=None, interactive=False), [])
css = """
.options.svelte-pcaovb {
display: none !important;
}
.option.svelte-pcaovb {
display: none !important;
}
"""
with gr.Blocks(css=css) as demo:
##############################
# Chatbot
##############################
gr.Markdown("""
# ♾️ FeeL - a real-time Feedback Loop for LMs
""")
with gr.Accordion("Explanation") as explanation:
gr.Markdown(f"""
FeeL is a collaboration between Hugging Face and MIT. It is a community-driven project to provide a real-time feedback loop for VLMs, where your feedback is continuously used to train the model. The [dataset](https://huggingface.co/datasets/{scheduler.repo_id}) and [code](https://github.com/huggingface/feel) are public.
Start by selecting your language, chat with the model with text and images and provide feedback in different ways.
- ✏️ Edit a message
- 👍/👎 Like or dislike a message
- 🔄 Regenerate a message
Some feedback is automatically submitted allowing you to continue chatting, but you can also submit and reset the conversation by clicking "💾 Submit conversation" (under the chat) or trash the conversation by clicking "🗑️" (upper right corner).
""")
language = gr.Dropdown(
choices=list(LANGUAGES.keys()), label="Language", interactive=True
)
session_id = gr.Textbox(
interactive=False,
value=str(uuid.uuid4()),
visible=False,
)
chatbot = gr.Chatbot(
elem_id="chatbot",
editable="all",
bubble_full_width=False,
value=[
{
"role": "system",
"content": LANGUAGES[language.value],
}
],
type="messages",
feedback_options=["Like", "Dislike"],
)
chat_input = gr.MultimodalTextbox(
interactive=True,
file_count="multiple",
placeholder="Enter message or upload file...",
show_label=False,
submit_btn=True,
)
dataframe = gr.Dataframe(wrap=True, label="Collected feedback")
submit_btn = gr.Button(
value="💾 Submit conversation",
)
##############################
# Deal with feedback
##############################
language.change(
fn=format_system_message,
inputs=[language, chatbot],
outputs=[chatbot],
)
chat_input.submit(
fn=add_user_message,
inputs=[chatbot, chat_input],
outputs=[chatbot, chat_input],
).then(respond_system_message, chatbot, chatbot, api_name="bot_response").then(
lambda: gr.Textbox(interactive=True), None, [chat_input]
).then(update_dataframe, inputs=[dataframe, chatbot], outputs=[dataframe])
chatbot.like(
fn=wrangle_like_data,
inputs=[chatbot],
outputs=[chatbot, dataframe],
like_user_message=False,
)
chatbot.retry(
fn=wrangle_retry_data,
inputs=[chatbot, dataframe, session_id, language],
outputs=[chatbot, dataframe],
)
chatbot.edit(
fn=wrangle_edit_data,
inputs=[chatbot, dataframe, session_id, language],
outputs=[chatbot],
).then(update_dataframe, inputs=[dataframe, chatbot], outputs=[dataframe])
submit_btn.click(
fn=submit_conversation,
inputs=[dataframe, session_id, language],
outputs=[dataframe, chatbot],
)
demo.load(
lambda: str(uuid.uuid4()),
inputs=[],
outputs=[session_id],
)
demo.launch()
# /private/var/folders/9t/msy700h16jz3q35qvg4z1ln40000gn/T/gradio/a5013b9763ad9f2192254540fee226539fbcd1382cbc2317b916aef469bb01b9/Screenshot 2025-01-13 at 08.02.26.png
|