File size: 13,566 Bytes
9cc6120
9109509
9cc6120
 
 
 
 
9109509
9cc6120
 
7ed0603
8880b78
9cc6120
 
 
0cba459
 
 
 
 
 
 
 
 
 
 
 
 
 
6ea04d8
9cc6120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ea04d8
 
 
 
 
 
 
0cba459
6ea04d8
 
 
 
 
 
104bc54
9cc6120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d39610d
195ed03
d39610d
195ed03
d39610d
9cc6120
195ed03
9cc6120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c39cd57
9cc6120
 
 
 
 
c39cd57
9cc6120
 
 
 
7ccbe37
 
 
8880b78
9109509
 
7ccbe37
9109509
 
8880b78
9109509
7ccbe37
104bc54
 
9109509
 
 
 
104bc54
9109509
104bc54
9cc6120
 
 
 
9109509
 
9cc6120
 
 
 
 
 
 
9109509
 
8880b78
 
 
 
 
 
 
 
 
9109509
 
9cc6120
 
 
104bc54
 
 
 
9cc6120
 
 
8880b78
 
9cc6120
 
8880b78
 
9cc6120
 
 
 
 
 
94c1e6b
9cc6120
8880b78
 
 
 
 
 
 
 
 
 
 
 
 
9cc6120
94c1e6b
 
 
9cc6120
 
 
 
 
8880b78
7ccbe37
8880b78
9109509
 
 
104bc54
 
 
 
 
8880b78
 
 
 
9109509
8880b78
16f921a
 
 
 
8880b78
9109509
 
 
 
8880b78
9109509
8880b78
16f921a
 
8880b78
 
 
 
 
 
 
 
 
 
7ccbe37
8880b78
9109509
 
 
7ccbe37
9109509
 
8880b78
9109509
 
 
 
8880b78
104bc54
 
7ccbe37
9cc6120
7ccbe37
 
9cc6120
 
 
16f921a
9cc6120
16f921a
9cc6120
 
 
7ccbe37
9cc6120
 
7ccbe37
9cc6120
 
 
8880b78
16f921a
 
 
 
8880b78
 
 
 
 
9cc6120
 
 
ae49850
 
 
 
 
7ed0603
 
ae49850
 
 
 
 
 
 
 
 
0cba459
 
 
ae49850
9cc6120
 
 
 
 
 
 
 
104bc54
9cc6120
6ea04d8
 
 
0cba459
6ea04d8
 
9cc6120
104bc54
9cc6120
 
 
 
 
 
 
 
 
 
ae49850
9cc6120
9109509
ae49850
9cc6120
 
 
 
 
 
6ea04d8
 
 
 
 
 
9109509
 
 
 
 
 
8880b78
9cc6120
 
 
 
 
 
 
 
104bc54
9109509
7ccbe37
8880b78
104bc54
 
 
 
7ccbe37
104bc54
8880b78
104bc54
9109509
9cc6120
7ccbe37
9cc6120
 
 
 
 
 
 
 
 
195ed03
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
import os
import random
import uuid
from base64 import b64encode
from datetime import datetime
from mimetypes import guess_type
from pathlib import Path
from typing import Optional

import gradio as gr
from feedback import save_feedback, scheduler
from gradio.components.chatbot import Option
from huggingface_hub import InferenceClient
from pandas import DataFrame

LANGUAGES: dict[str, str] = {
    "English": "You are a helpful assistant that speaks English.",
    "Spanish": "Tu eres un asistente útil que habla español.",
    "Hebrew": "אתה עוזר טוב שמפגש בעברית.",
    "Dutch": "Je bent een handige assistent die Nederlands spreekt.",
    "Italian": "Tu sei un assistente utile che parla italiano.",
    "French": "Tu es un assistant utile qui parle français.",
    "German": "Du bist ein hilfreicher Assistent, der Deutsch spricht.",
    "Portuguese": "Você é um assistente útil que fala português.",
    "Russian": "Ты полезный помощник, который говорит по-русски.",
    "Chinese": "你是一个有用的助手,会说中文。",
    "Japanese": "あなたは役立つ助け役で、日本語を話します。",
    "Korean": "당신은 유용한 도우미이며 한국어를 말합니다.",
}

client = InferenceClient(
    token=os.getenv("HF_TOKEN"),
    model=(
        os.getenv("MODEL", "meta-llama/Llama-3.2-11B-Vision-Instruct")
        if not os.getenv("BASE_URL")
        else None
    ),
    base_url=os.getenv("BASE_URL"),
)


def add_user_message(history, message):
    for x in message["files"]:
        history.append({"role": "user", "content": {"path": x}})
    if message["text"] is not None:
        history.append({"role": "user", "content": message["text"]})
    return history, gr.MultimodalTextbox(value=None, interactive=False)


def format_system_message(language: str, history: list):
    if history:
        if history[0]["role"] == "system":
            history = history[1:]
    system_message = [
        {
            "role": "system",
            "content": LANGUAGES[language],
        }
    ]
    history = system_message + history
    return history


def format_history_as_messages(history: list):
    messages = []
    current_role = None
    current_message_content = []

    for entry in history:
        content = entry["content"]

        if entry["role"] != current_role:
            if current_role is not None:
                messages.append(
                    {"role": current_role, "content": current_message_content}
                )
            current_role = entry["role"]
            current_message_content = []

        if isinstance(content, tuple):  # Handle file paths
            for temp_path in content:
                if space_host := os.getenv("SPACE_HOST"):
                    url = f"https://{space_host}/gradio_api/file%3D{temp_path}"
                else:
                    url = _convert_path_to_data_uri(temp_path)
                current_message_content.append(
                    {"type": "image_url", "image_url": {"url": url}}
                )
        elif isinstance(content, str):  # Handle text
            current_message_content.append({"type": "text", "text": content})

    if current_role is not None:
        messages.append({"role": current_role, "content": current_message_content})

    return messages


def _convert_path_to_data_uri(path) -> str:
    mime_type, _ = guess_type(path)
    with open(path, "rb") as image_file:
        data = image_file.read()
        data_uri = f"data:{mime_type};base64," + b64encode(data).decode("utf-8")
    return data_uri


def _is_file_safe(path) -> bool:
    try:
        return Path(path).is_file()
    except Exception:
        return ""


def _process_content(content) -> str | list[str]:
    if isinstance(content, str) and _is_file_safe(content):
        return _convert_path_to_data_uri(content)
    elif isinstance(content, list) or isinstance(content, tuple):
        return _convert_path_to_data_uri(content[0])
    return content


def add_fake_like_data(
    history: list, session_id: str, language: str, liked: bool = False
) -> None:
    data = {
        "index": len(history) - 1,
        "value": history[-1],
        "liked": liked,
    }
    _, dataframe = wrangle_like_data(
        gr.LikeData(target=None, data=data), history.copy()
    )
    submit_conversation(dataframe, session_id, language)


def respond_system_message(
    history: list, temperature: Optional[float] = None, seed: Optional[int] = None
) -> list:  # -> list:
    """Respond to the user message with a system message

    Return the history with the new message"""
    messages = format_history_as_messages(history)
    response = client.chat.completions.create(
        messages=messages,
        max_tokens=2000,
        stream=False,
        seed=seed,
        temperature=temperature,
    )
    content = response.choices[0].message.content
    message = gr.ChatMessage(role="assistant", content=content)
    history.append(message)
    return history


def update_dataframe(dataframe: DataFrame, history: list) -> DataFrame:
    """Update the dataframe with the new message"""
    data = {
        "index": 9999,
        "value": None,
        "liked": False,
    }
    _, dataframe = wrangle_like_data(
        gr.LikeData(target=None, data=data), history.copy()
    )
    return dataframe


def wrangle_like_data(x: gr.LikeData, history) -> DataFrame:
    """Wrangle conversations and liked data into a DataFrame"""

    if isinstance(x.index, int):
        liked_index = x.index
    else:
        liked_index = x.index[0]

    output_data = []
    for idx, message in enumerate(history):
        if isinstance(message, gr.ChatMessage):
            message = message.__dict__
        if idx == liked_index:
            message["metadata"] = {"title": "liked" if x.liked else "disliked"}
        if not isinstance(message["metadata"], dict):
            message["metadata"] = message["metadata"].__dict__
        rating = message["metadata"].get("title")
        if rating == "liked":
            message["rating"] = 1
        elif rating == "disliked":
            message["rating"] = -1
        else:
            message["rating"] = 0

        message["chosen"] = ""
        message["rejected"] = ""
        if message["options"]:
            for option in message["options"]:
                if not isinstance(option, dict):
                    option = option.__dict__
                message[option["label"]] = option["value"]
        else:
            if message["rating"] == 1:
                message["chosen"] = message["content"]
            elif message["rating"] == -1:
                message["rejected"] = message["content"]

        output_data.append(
            dict(
                [(k, v) for k, v in message.items() if k not in ["metadata", "options"]]
            )
        )

    return history, DataFrame(data=output_data)


def wrangle_edit_data(
    x: gr.EditData, history: list, dataframe: DataFrame, session_id: str, language: str
) -> list:
    """Edit the conversation and add negative feedback if assistant message is edited, otherwise regenerate the message

    Return the history with the new message"""
    if isinstance(x.index, int):
        index = x.index
    else:
        index = x.index[0]

    original_message = gr.ChatMessage(
        role="assistant", content=dataframe.iloc[index]["content"]
    ).__dict__

    if history[index]["role"] == "user":
        # Add feedback on original and corrected message
        add_fake_like_data(history[: index + 2], session_id, language, liked=True)
        add_fake_like_data(
            history[: index + 1] + [original_message], session_id, language
        )
        history = respond_system_message(
            history[: index + 1],
            temperature=random.randint(1, 100) / 100,
            seed=random.randint(0, 1000000),
        )
        return history
    else:
        # Add feedback on original and corrected message
        add_fake_like_data(history[: index + 1], session_id, language, liked=True)
        add_fake_like_data(history[:index] + [original_message], session_id, language)
        history = history[: index + 1]
        # add chosen and rejected options
        history[-1]["options"] = [
            Option(label="chosen", value=x.value),
            Option(label="rejected", value=original_message["content"]),
        ]
        return history


def wrangle_retry_data(
    x: gr.RetryData, history: list, dataframe: DataFrame, session_id: str, language: str
) -> list:
    """Respond to the user message with a system message and add negative feedback on the original message

    Return the history with the new message"""
    add_fake_like_data(history, session_id, language)

    # Return the history without a new message
    history = respond_system_message(
        history[:-1],
        temperature=random.randint(1, 100) / 100,
        seed=random.randint(0, 1000000),
    )
    return history, update_dataframe(dataframe, history)


def submit_conversation(dataframe, session_id, language):
    """ "Submit the conversation to dataset repo"""
    if dataframe.empty or len(dataframe) < 2:
        gr.Info("No feedback to submit.")
        return (gr.Dataframe(value=None, interactive=False), [])

    dataframe["content"] = dataframe["content"].apply(_process_content)
    conversation = dataframe.to_dict(orient="records")
    conversation_data = {
        "conversation": conversation,
        "timestamp": datetime.now().isoformat(),
        "session_id": session_id,
        "conversation_id": str(uuid.uuid4()),
        "language": language,
    }
    save_feedback(input_object=conversation_data)
    gr.Info("Submitted your feedback!")
    return (gr.Dataframe(value=None, interactive=False), [])


css = """
.options.svelte-pcaovb {
    display: none !important;
}
.option.svelte-pcaovb {
    display: none !important;
}
"""

with gr.Blocks(css=css) as demo:
    ##############################
    # Chatbot
    ##############################
    gr.Markdown("""
    # ♾️ FeeL - a real-time Feedback Loop for LMs
    """)

    with gr.Accordion("Explanation") as explanation:
        gr.Markdown(f"""
        FeeL is a collaboration between Hugging Face and MIT. It is a community-driven project to provide a real-time feedback loop for VLMs, where your feedback is continuously used to train the model. The [dataset](https://huggingface.co/datasets/{scheduler.repo_id}) and [code](https://github.com/huggingface/feel) are public.

        Start by selecting your language, chat with the model with text and images and provide feedback in different ways.

        - ✏️ Edit a message
        - 👍/👎 Like or dislike a message
        - 🔄 Regenerate a message

        Some feedback is automatically submitted allowing you to continue chatting, but you can also submit and reset the conversation by clicking "💾 Submit conversation" (under the chat) or trash the conversation by clicking "🗑️" (upper right corner).
        """)
        language = gr.Dropdown(
            choices=list(LANGUAGES.keys()), label="Language", interactive=True
        )

    session_id = gr.Textbox(
        interactive=False,
        value=str(uuid.uuid4()),
        visible=False,
    )

    chatbot = gr.Chatbot(
        elem_id="chatbot",
        editable="all",
        bubble_full_width=False,
        value=[
            {
                "role": "system",
                "content": LANGUAGES[language.value],
            }
        ],
        type="messages",
        feedback_options=["Like", "Dislike"],
    )

    chat_input = gr.MultimodalTextbox(
        interactive=True,
        file_count="multiple",
        placeholder="Enter message or upload file...",
        show_label=False,
        submit_btn=True,
    )

    dataframe = gr.Dataframe(wrap=True, label="Collected feedback")

    submit_btn = gr.Button(
        value="💾 Submit conversation",
    )

    ##############################
    # Deal with feedback
    ##############################

    language.change(
        fn=format_system_message,
        inputs=[language, chatbot],
        outputs=[chatbot],
    )

    chat_input.submit(
        fn=add_user_message,
        inputs=[chatbot, chat_input],
        outputs=[chatbot, chat_input],
    ).then(respond_system_message, chatbot, chatbot, api_name="bot_response").then(
        lambda: gr.Textbox(interactive=True), None, [chat_input]
    ).then(update_dataframe, inputs=[dataframe, chatbot], outputs=[dataframe])

    chatbot.like(
        fn=wrangle_like_data,
        inputs=[chatbot],
        outputs=[chatbot, dataframe],
        like_user_message=False,
    )

    chatbot.retry(
        fn=wrangle_retry_data,
        inputs=[chatbot, dataframe, session_id, language],
        outputs=[chatbot, dataframe],
    )

    chatbot.edit(
        fn=wrangle_edit_data,
        inputs=[chatbot, dataframe, session_id, language],
        outputs=[chatbot],
    ).then(update_dataframe, inputs=[dataframe, chatbot], outputs=[dataframe])

    submit_btn.click(
        fn=submit_conversation,
        inputs=[dataframe, session_id, language],
        outputs=[dataframe, chatbot],
    )
    demo.load(
        lambda: str(uuid.uuid4()),
        inputs=[],
        outputs=[session_id],
    )

demo.launch()

# /private/var/folders/9t/msy700h16jz3q35qvg4z1ln40000gn/T/gradio/a5013b9763ad9f2192254540fee226539fbcd1382cbc2317b916aef469bb01b9/Screenshot 2025-01-13 at 08.02.26.png