Jen Ben Arye
commited on
Commit
·
239efc0
1
Parent(s):
71053f2
updated to only load preference data
Browse files- kto_dataset_processor.py +34 -27
- kto_pipeline.py +43 -1
kto_dataset_processor.py
CHANGED
@@ -5,54 +5,61 @@ from pdb import set_trace as st
|
|
5 |
|
6 |
def process_dataset_ultrafeedback():
|
7 |
"""
|
8 |
-
Processes the '
|
|
|
9 |
|
10 |
Returns:
|
11 |
dict: A dictionary containing the unified 'train' and 'test' splits of the dataset in the KTO format.
|
12 |
Each split is a Hugging Face Dataset object.
|
13 |
"""
|
14 |
-
# Load the dataset
|
15 |
dataset_name = "HuggingFaceH4/ultrafeedback_binarized"
|
16 |
-
|
|
|
17 |
|
18 |
# Function to transform a single example into the desired schema
|
19 |
def transform_data(example):
|
20 |
data_points = []
|
21 |
# Chosen completion
|
22 |
chosen_completion = example["chosen"][1]["content"]
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
28 |
# Rejected completion
|
29 |
rejected_completion = example["rejected"][1]["content"]
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
35 |
return data_points
|
36 |
|
37 |
-
#
|
38 |
train_data = []
|
39 |
test_data = []
|
40 |
|
41 |
-
for
|
42 |
-
|
43 |
-
for example in split_data:
|
44 |
-
train_data.extend(transform_data(example))
|
45 |
-
elif "test" in split_name:
|
46 |
-
for example in split_data:
|
47 |
-
test_data.extend(transform_data(example))
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
return {"train": unified_train, "test": unified_test}
|
54 |
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
5 |
|
6 |
def process_dataset_ultrafeedback():
|
7 |
"""
|
8 |
+
Processes the 'train_prefs' and 'test_prefs' splits of the 'HuggingFaceH4/ultrafeedback_binarized' dataset
|
9 |
+
into a unified format for preference modeling.
|
10 |
|
11 |
Returns:
|
12 |
dict: A dictionary containing the unified 'train' and 'test' splits of the dataset in the KTO format.
|
13 |
Each split is a Hugging Face Dataset object.
|
14 |
"""
|
15 |
+
# Load the relevant splits of the dataset
|
16 |
dataset_name = "HuggingFaceH4/ultrafeedback_binarized"
|
17 |
+
train_prefs = load_dataset(dataset_name, split="train_prefs")
|
18 |
+
test_prefs = load_dataset(dataset_name, split="test_prefs")
|
19 |
|
20 |
# Function to transform a single example into the desired schema
|
21 |
def transform_data(example):
|
22 |
data_points = []
|
23 |
# Chosen completion
|
24 |
chosen_completion = example["chosen"][1]["content"]
|
25 |
+
if chosen_completion.strip(): # Check for non-empty completions
|
26 |
+
data_points.append({
|
27 |
+
"prompt": example["prompt"],
|
28 |
+
"completion": chosen_completion.strip(),
|
29 |
+
"label": True
|
30 |
+
})
|
31 |
# Rejected completion
|
32 |
rejected_completion = example["rejected"][1]["content"]
|
33 |
+
if rejected_completion.strip(): # Check for non-empty completions
|
34 |
+
data_points.append({
|
35 |
+
"prompt": example["prompt"],
|
36 |
+
"completion": rejected_completion.strip(),
|
37 |
+
"label": False
|
38 |
+
})
|
39 |
return data_points
|
40 |
|
41 |
+
# Process train and test splits
|
42 |
train_data = []
|
43 |
test_data = []
|
44 |
|
45 |
+
for example in train_prefs:
|
46 |
+
train_data.extend(transform_data(example))
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
+
for example in test_prefs:
|
49 |
+
test_data.extend(transform_data(example))
|
50 |
+
|
51 |
+
# Convert unified data to DataFrames
|
52 |
+
train_df = pd.DataFrame(train_data)
|
53 |
+
test_df = pd.DataFrame(test_data)
|
54 |
+
|
55 |
+
|
56 |
+
# Convert to Hugging Face Dataset
|
57 |
+
unified_train = Dataset.from_pandas(train_df)
|
58 |
+
unified_test = Dataset.from_pandas(test_df)
|
59 |
|
60 |
return {"train": unified_train, "test": unified_test}
|
61 |
|
62 |
|
63 |
+
if __name__ == "__main__":
|
64 |
+
kto_dataset = process_dataset_ultrafeedback()
|
65 |
+
st()
|
kto_pipeline.py
CHANGED
@@ -2,7 +2,7 @@ import torch
|
|
2 |
from dataclasses import dataclass
|
3 |
from accelerate import PartialState
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser
|
5 |
-
from trl import KTOConfig, KTOTrainer, ModelConfig, get_peft_config
|
6 |
from kto_dataset_processor import process_dataset_ultrafeedback
|
7 |
from datetime import datetime
|
8 |
import wandb
|
@@ -78,8 +78,45 @@ def load_model_and_tokenizer(model_args):
|
|
78 |
if tokenizer.pad_token is None:
|
79 |
tokenizer.pad_token = tokenizer.eos_token
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
return model, tokenizer
|
82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
####################################
|
84 |
# MAIN LOGIC
|
85 |
####################################
|
@@ -99,6 +136,11 @@ def main():
|
|
99 |
dataset = process_dataset_ultrafeedback()
|
100 |
print("Dataset processed.")
|
101 |
|
|
|
|
|
|
|
|
|
|
|
102 |
# Initialize trainer
|
103 |
print("Initializing trainer...")
|
104 |
trainer = KTOTrainer(
|
|
|
2 |
from dataclasses import dataclass
|
3 |
from accelerate import PartialState
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser
|
5 |
+
from trl import KTOConfig, KTOTrainer, ModelConfig, get_peft_config, maybe_unpair_preference_dataset, setup_chat_format
|
6 |
from kto_dataset_processor import process_dataset_ultrafeedback
|
7 |
from datetime import datetime
|
8 |
import wandb
|
|
|
78 |
if tokenizer.pad_token is None:
|
79 |
tokenizer.pad_token = tokenizer.eos_token
|
80 |
|
81 |
+
# Setup chat format if not present
|
82 |
+
if tokenizer.chat_template is None:
|
83 |
+
model, tokenizer = setup_chat_format(model, tokenizer)
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
return model, tokenizer
|
88 |
|
89 |
+
|
90 |
+
# def find_unknown_tokens(tokenizer, texts):
|
91 |
+
# """
|
92 |
+
# Identify tokens in the dataset that are not in the tokenizer's vocabulary.
|
93 |
+
# """
|
94 |
+
# all_tokens = set()
|
95 |
+
# for text in texts:
|
96 |
+
# tokens = tokenizer.tokenize(text)
|
97 |
+
# all_tokens.update(tokens)
|
98 |
+
# vocab = set(tokenizer.get_vocab().keys())
|
99 |
+
# unknown_tokens = all_tokens - vocab
|
100 |
+
# return unknown_tokens
|
101 |
+
|
102 |
+
|
103 |
+
# def add_tokens_to_tokenizer(tokenizer, model, dataset):
|
104 |
+
# """
|
105 |
+
# Extend the tokenizer's vocabulary with missing tokens and resize the model embeddings.
|
106 |
+
# """
|
107 |
+
# # Extract all texts from the dataset
|
108 |
+
# texts = [example["completion"] for example in dataset["train"]]
|
109 |
+
|
110 |
+
# # Identify unknown tokens
|
111 |
+
# unknown_tokens = find_unknown_tokens(tokenizer, texts)
|
112 |
+
# print(f"Found {len(unknown_tokens)} unknown tokens: {list(unknown_tokens)[:10]}...")
|
113 |
+
|
114 |
+
# # Add unknown tokens to tokenizer
|
115 |
+
# tokenizer.add_tokens(list(unknown_tokens))
|
116 |
+
# model.resize_token_embeddings(len(tokenizer))
|
117 |
+
# print(f"Tokenizer vocabulary size after extension: {len(tokenizer)}")
|
118 |
+
|
119 |
+
|
120 |
####################################
|
121 |
# MAIN LOGIC
|
122 |
####################################
|
|
|
136 |
dataset = process_dataset_ultrafeedback()
|
137 |
print("Dataset processed.")
|
138 |
|
139 |
+
# # Extend tokenizer with missing tokens
|
140 |
+
# print("Adding unknown tokens to tokenizer...")
|
141 |
+
# add_tokens_to_tokenizer(tokenizer, model, dataset)
|
142 |
+
# print("Tokenizer updated.")
|
143 |
+
|
144 |
# Initialize trainer
|
145 |
print("Initializing trainer...")
|
146 |
trainer = KTOTrainer(
|