Riddhi Bhagwat
commited on
Commit
·
261522b
1
Parent(s):
04f923c
Add files via upload
Browse files- data_transform_pipeline.py +80 -0
data_transform_pipeline.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
# NOTE: names of preset cols may be different based on dataset, this is just a generalized pipeline
|
5 |
+
|
6 |
+
CHOSEN_COLUMN = 'chosen' # name of col with chosen responses
|
7 |
+
REJECTED_COLUMN = 'rejected' # name of col with rejected responses
|
8 |
+
COLUMNS_TO_DROP = ['metadata', 'timestamp', 'id'] # cols to remove
|
9 |
+
|
10 |
+
def transform_rlhf_dataset(df, chosen_col=CHOSEN_COLUMN, rejected_col=REJECTED_COLUMN, drop_cols=COLUMNS_TO_DROP):
|
11 |
+
"""
|
12 |
+
Parameters:
|
13 |
+
df (pandas.DataFrame): Input dataframe with chosen and rejected columns
|
14 |
+
chosen_col (str): Name of column containing chosen responses
|
15 |
+
rejected_col (str): Name of column containing rejected responses
|
16 |
+
drop_cols (list): List of column names to drop from the dataset
|
17 |
+
|
18 |
+
Returns:
|
19 |
+
pandas.DataFrame: Transformed dataset with 'text' and 'label' columns
|
20 |
+
"""
|
21 |
+
|
22 |
+
df = df.copy()
|
23 |
+
|
24 |
+
existing_cols_to_drop = [col for col in drop_cols if col in df.columns]
|
25 |
+
if existing_cols_to_drop:
|
26 |
+
df = df.drop(columns=existing_cols_to_drop)
|
27 |
+
|
28 |
+
preserved_cols = [col for col in df.columns if col not in [chosen_col, rejected_col]]
|
29 |
+
|
30 |
+
# two separate dataframes for liked and disliked
|
31 |
+
liked_df = df[[chosen_col]].copy()
|
32 |
+
liked_df.columns = ['text']
|
33 |
+
liked_df['label'] = 'liked'
|
34 |
+
|
35 |
+
disliked_df = df[[rejected_col]].copy()
|
36 |
+
disliked_df.columns = ['text']
|
37 |
+
disliked_df['label'] = 'disliked'
|
38 |
+
|
39 |
+
for col in preserved_cols:
|
40 |
+
liked_df[col] = df[col]
|
41 |
+
for col in preserved_cols:
|
42 |
+
disliked_df[col] = df[col]
|
43 |
+
|
44 |
+
# combine + shuffle
|
45 |
+
transformed_df = pd.concat([liked_df, disliked_df], ignore_index=True)
|
46 |
+
transformed_df = transformed_df.dropna(subset=['text'])
|
47 |
+
transformed_df = transformed_df.sample(frac=1).reset_index(drop=True)
|
48 |
+
|
49 |
+
# reordering
|
50 |
+
column_order = ['text', 'label'] + preserved_cols
|
51 |
+
transformed_df = transformed_df[column_order]
|
52 |
+
|
53 |
+
return transformed_df
|
54 |
+
|
55 |
+
def test_example():
|
56 |
+
example_data = {
|
57 |
+
'chosen': ['This is a good response', 'Another good one'],
|
58 |
+
'rejected': ['This is a bad response', 'Another bad one'],
|
59 |
+
'metadata': ['meta1', 'meta2'],
|
60 |
+
'timestamp': ['2024-01-01', '2024-01-02'],
|
61 |
+
'id': [1, 2]
|
62 |
+
}
|
63 |
+
|
64 |
+
df = pd.DataFrame(example_data)
|
65 |
+
transformed_df = transform_rlhf_dataset(
|
66 |
+
df,
|
67 |
+
chosen_col='chosen',
|
68 |
+
rejected_col='rejected',
|
69 |
+
drop_cols=['metadata', 'id']
|
70 |
+
)
|
71 |
+
|
72 |
+
print("Original shape:", df.shape)
|
73 |
+
print("\nTransformed shape:", transformed_df.shape)
|
74 |
+
print("\nTransformation sample:")
|
75 |
+
print(transformed_df.head())
|
76 |
+
print("\nLabel distribution:")
|
77 |
+
print(transformed_df['label'].value_counts())
|
78 |
+
|
79 |
+
if __name__ == "__main__":
|
80 |
+
test_example()
|