Jen Ben Arye
commited on
Commit
·
6f11489
1
Parent(s):
669afda
trained model using kto - sanity check
Browse files- kto_pipeline.py +122 -0
kto_pipeline.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import os
|
2 |
+
# os.environ['CUDA_VISIBLE_DEVICES'] = "3"
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from dataclasses import dataclass
|
6 |
+
|
7 |
+
from accelerate import PartialState
|
8 |
+
from datasets import load_dataset, DatasetDict
|
9 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser
|
10 |
+
|
11 |
+
from trl import KTOConfig, KTOTrainer, ModelConfig, get_peft_config, maybe_unpair_preference_dataset, setup_chat_format
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
print(f'GPU number: {torch.cuda.current_device()}')
|
16 |
+
|
17 |
+
|
18 |
+
# Define and parse arguments.
|
19 |
+
@dataclass
|
20 |
+
class ScriptArguments:
|
21 |
+
"""
|
22 |
+
The arguments for the KTO training script.
|
23 |
+
"""
|
24 |
+
|
25 |
+
dataset_name: str = "trl-lib/kto-mix-14k"
|
26 |
+
|
27 |
+
|
28 |
+
# Initialize the arguments directly
|
29 |
+
script_args = ScriptArguments(
|
30 |
+
dataset_name="trl-lib/kto-mix-14k"
|
31 |
+
)
|
32 |
+
|
33 |
+
training_args = KTOConfig(
|
34 |
+
output_dir="/raid/lingo/jen_ben/HF-RLHF/kto_oct_26", # MODFIFY
|
35 |
+
num_train_epochs=100,
|
36 |
+
per_device_train_batch_size=32,
|
37 |
+
learning_rate=5e-7,
|
38 |
+
lr_scheduler_type="cosine",
|
39 |
+
gradient_accumulation_steps=1,
|
40 |
+
logging_steps=10,
|
41 |
+
eval_steps=500,
|
42 |
+
warmup_ratio=0.1,
|
43 |
+
bf16=True,
|
44 |
+
logging_first_step=True
|
45 |
+
)
|
46 |
+
|
47 |
+
model_args = ModelConfig(
|
48 |
+
model_name_or_path="trl-lib/qwen1.5-1.8b-sft",
|
49 |
+
# any additional model-specific arguments
|
50 |
+
)
|
51 |
+
|
52 |
+
|
53 |
+
# Load a pretrained model
|
54 |
+
model = AutoModelForCausalLM.from_pretrained(
|
55 |
+
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code
|
56 |
+
)
|
57 |
+
ref_model = AutoModelForCausalLM.from_pretrained(
|
58 |
+
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code
|
59 |
+
)
|
60 |
+
print(f'loaded model')
|
61 |
+
|
62 |
+
# load a tokenaizer
|
63 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
64 |
+
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code
|
65 |
+
)
|
66 |
+
if tokenizer.pad_token is None:
|
67 |
+
tokenizer.pad_token = tokenizer.eos_token
|
68 |
+
|
69 |
+
# If we are aligning a base model, we use ChatML as the default template
|
70 |
+
if tokenizer.chat_template is None:
|
71 |
+
model, tokenizer = setup_chat_format(model, tokenizer)
|
72 |
+
print(f'loaded tokenizer')
|
73 |
+
|
74 |
+
# Load the dataset
|
75 |
+
dataset = load_dataset(script_args.dataset_name)
|
76 |
+
|
77 |
+
# If needed, reformat a DPO-formatted dataset (prompt, chosen, rejected) to a KTO-format (prompt, completion, label)
|
78 |
+
dataset = maybe_unpair_preference_dataset(dataset, num_proc=training_args.dataset_num_proc)
|
79 |
+
print(f'loaded dataset')
|
80 |
+
|
81 |
+
|
82 |
+
# Apply chat template
|
83 |
+
def format_dataset(example):
|
84 |
+
example["prompt"] = tokenizer.apply_chat_template(example["prompt"], tokenize=False)
|
85 |
+
example["completion"] = tokenizer.apply_chat_template(example["completion"], tokenize=False)
|
86 |
+
return example
|
87 |
+
|
88 |
+
|
89 |
+
# Compute that only on the main process for faster data processing.
|
90 |
+
# see: https://github.com/huggingface/trl/pull/1255
|
91 |
+
with PartialState().local_main_process_first():
|
92 |
+
dataset = dataset.map(format_dataset, num_proc=training_args.dataset_num_proc)
|
93 |
+
|
94 |
+
|
95 |
+
|
96 |
+
# Initialize the KTO trainer
|
97 |
+
trainer = KTOTrainer(
|
98 |
+
model,
|
99 |
+
ref_model,
|
100 |
+
args=training_args,
|
101 |
+
train_dataset=dataset["train"],
|
102 |
+
eval_dataset=dataset["test"],
|
103 |
+
tokenizer=tokenizer,
|
104 |
+
peft_config=get_peft_config(model_args),
|
105 |
+
)
|
106 |
+
|
107 |
+
print(f'start training')
|
108 |
+
|
109 |
+
trainer.train()
|
110 |
+
|
111 |
+
print(f'finished training')
|
112 |
+
|
113 |
+
metrics = trainer.evaluate()
|
114 |
+
print(f'metrics: \n {metrics}')
|
115 |
+
trainer.log_metrics("eval", metrics)
|
116 |
+
trainer.save_metrics("eval", metrics)
|
117 |
+
|
118 |
+
|
119 |
+
# Save and push to hub
|
120 |
+
trainer.save_model(training_args.output_dir)
|
121 |
+
if training_args.push_to_hub:
|
122 |
+
trainer.push_to_hub(dataset_name=script_args.dataset_name)
|