# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Run the KTO training script with the commands below. In general, the optimal configuration for KTO will be similar to that of DPO. # Full training: python examples/scripts/kto.py \ --dataset_name trl-lib/kto-mix-14k \ --model_name_or_path=trl-lib/qwen1.5-1.8b-sft \ --per_device_train_batch_size 16 \ --num_train_epochs 1 \ --learning_rate 5e-7 \ --lr_scheduler_type=cosine \ --gradient_accumulation_steps 1 \ --logging_steps 10 \ --eval_steps 500 \ --output_dir=kto-aligned-model \ --warmup_ratio 0.1 \ --report_to wandb \ --bf16 \ --logging_first_step # QLoRA: python examples/scripts/kto.py \ --dataset_name trl-lib/kto-mix-14k \ --model_name_or_path=trl-lib/qwen1.5-1.8b-sft \ --per_device_train_batch_size 8 \ --num_train_epochs 1 \ --learning_rate 5e-7 \ --lr_scheduler_type=cosine \ --gradient_accumulation_steps 1 \ --logging_steps 10 \ --eval_steps 500 \ --output_dir=kto-aligned-model-lora \ --warmup_ratio 0.1 \ --report_to wandb \ --bf16 \ --logging_first_step \ --use_peft \ --load_in_4bit \ --lora_target_modules=all-linear \ --lora_r=16 \ --lora_alpha=16 """ from datasets import load_dataset from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser from trl import ( KTOConfig, KTOTrainer, ModelConfig, ScriptArguments, get_peft_config, setup_chat_format, ) if __name__ == "__main__": parser = HfArgumentParser((ScriptArguments, KTOConfig, ModelConfig)) script_args, training_args, model_args = parser.parse_args_into_dataclasses() # Load a pretrained model model = AutoModelForCausalLM.from_pretrained( model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code ) ref_model = AutoModelForCausalLM.from_pretrained( model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code ) tokenizer = AutoTokenizer.from_pretrained( model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code ) if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token # If we are aligning a base model, we use ChatML as the default template if tokenizer.chat_template is None: model, tokenizer = setup_chat_format(model, tokenizer) # Load the dataset dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config) # Initialize the KTO trainer trainer = KTOTrainer( model, ref_model, args=training_args, train_dataset=dataset[script_args.dataset_train_split], eval_dataset=( dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None ), processing_class=tokenizer, peft_config=get_peft_config(model_args), ) # Train and push the model to the Hub trainer.train() # Save and push to hub trainer.save_model(training_args.output_dir) if training_args.push_to_hub: trainer.push_to_hub(dataset_name=script_args.dataset_name)