File size: 10,660 Bytes
29d49a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import math
import numpy as np
import cv2


eps = 0.01


def smart_resize(x, s):
    Ht, Wt = s
    if x.ndim == 2:
        Ho, Wo = x.shape
        Co = 1
    else:
        Ho, Wo, Co = x.shape
    if Co == 3 or Co == 1:
        k = float(Ht + Wt) / float(Ho + Wo)
        return cv2.resize(x, (int(Wt), int(Ht)), interpolation=cv2.INTER_AREA if k < 1 else cv2.INTER_LANCZOS4)
    else:
        return np.stack([smart_resize(x[:, :, i], s) for i in range(Co)], axis=2)


def smart_resize_k(x, fx, fy):
    if x.ndim == 2:
        Ho, Wo = x.shape
        Co = 1
    else:
        Ho, Wo, Co = x.shape
    Ht, Wt = Ho * fy, Wo * fx
    if Co == 3 or Co == 1:
        k = float(Ht + Wt) / float(Ho + Wo)
        return cv2.resize(x, (int(Wt), int(Ht)), interpolation=cv2.INTER_AREA if k < 1 else cv2.INTER_LANCZOS4)
    else:
        return np.stack([smart_resize_k(x[:, :, i], fx, fy) for i in range(Co)], axis=2)


def padRightDownCorner(img, stride, padValue):
    h = img.shape[0]
    w = img.shape[1]

    pad = 4 * [None]
    pad[0] = 0 # up
    pad[1] = 0 # left
    pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down
    pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right

    img_padded = img
    pad_up = np.tile(img_padded[0:1, :, :]*0 + padValue, (pad[0], 1, 1))
    img_padded = np.concatenate((pad_up, img_padded), axis=0)
    pad_left = np.tile(img_padded[:, 0:1, :]*0 + padValue, (1, pad[1], 1))
    img_padded = np.concatenate((pad_left, img_padded), axis=1)
    pad_down = np.tile(img_padded[-2:-1, :, :]*0 + padValue, (pad[2], 1, 1))
    img_padded = np.concatenate((img_padded, pad_down), axis=0)
    pad_right = np.tile(img_padded[:, -2:-1, :]*0 + padValue, (1, pad[3], 1))
    img_padded = np.concatenate((img_padded, pad_right), axis=1)

    return img_padded, pad


def transfer(model, model_weights):
    transfered_model_weights = {}
    for weights_name in model.state_dict().keys():
        transfered_model_weights[weights_name] = model_weights['.'.join(weights_name.split('.')[1:])]
    return transfered_model_weights


def draw_bodypose(canvas, candidate, subset):
    H, W, C = canvas.shape
    candidate = np.array(candidate)
    subset = np.array(subset)

    stickwidth = 4

    limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
               [10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
               [1, 16], [16, 18], [3, 17], [6, 18]]

    colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
              [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \
              [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]

    for i in range(17):
        for n in range(len(subset)):
            index = subset[n][np.array(limbSeq[i]) - 1]
            if -1 in index:
                continue
            Y = candidate[index.astype(int), 0] * float(W)
            X = candidate[index.astype(int), 1] * float(H)
            mX = np.mean(X)
            mY = np.mean(Y)
            length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
            angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
            polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
            cv2.fillConvexPoly(canvas, polygon, colors[i])

    canvas = (canvas * 0.6).astype(np.uint8)

    for i in range(18):
        for n in range(len(subset)):
            index = int(subset[n][i])
            if index == -1:
                continue
            x, y = candidate[index][0:2]
            x = int(x * W)
            y = int(y * H)
            cv2.circle(canvas, (int(x), int(y)), 4, colors[i], thickness=-1)

    return canvas


def draw_handpose(canvas, all_hand_peaks):
    import matplotlib
    
    H, W, C = canvas.shape

    edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \
             [10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]]
    
    # (person_number*2, 21, 2)
    for i in range(len(all_hand_peaks)):
        peaks = all_hand_peaks[i]
        peaks = np.array(peaks)
        
        for ie, e in enumerate(edges):

            x1, y1 = peaks[e[0]]
            x2, y2 = peaks[e[1]]
            
            x1 = int(x1 * W)
            y1 = int(y1 * H)
            x2 = int(x2 * W)
            y2 = int(y2 * H)
            if x1 > eps and y1 > eps and x2 > eps and y2 > eps:
                cv2.line(canvas, (x1, y1), (x2, y2), matplotlib.colors.hsv_to_rgb([ie / float(len(edges)), 1.0, 1.0]) * 255, thickness=2)

        for _, keyponit in enumerate(peaks):
            x, y = keyponit

            x = int(x * W)
            y = int(y * H)
            if x > eps and y > eps:
                cv2.circle(canvas, (x, y), 4, (0, 0, 255), thickness=-1)
    return canvas


def draw_facepose(canvas, all_lmks):
    H, W, C = canvas.shape
    for lmks in all_lmks:
        lmks = np.array(lmks)
        for lmk in lmks:
            x, y = lmk
            x = int(x * W)
            y = int(y * H)
            if x > eps and y > eps:
                cv2.circle(canvas, (x, y), 3, (255, 255, 255), thickness=-1)
    return canvas


# detect hand according to body pose keypoints
# please refer to https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/hand/handDetector.cpp
def handDetect(candidate, subset, oriImg):
    # right hand: wrist 4, elbow 3, shoulder 2
    # left hand: wrist 7, elbow 6, shoulder 5
    ratioWristElbow = 0.33
    detect_result = []
    image_height, image_width = oriImg.shape[0:2]
    for person in subset.astype(int):
        # if any of three not detected
        has_left = np.sum(person[[5, 6, 7]] == -1) == 0
        has_right = np.sum(person[[2, 3, 4]] == -1) == 0
        if not (has_left or has_right):
            continue
        hands = []
        #left hand
        if has_left:
            left_shoulder_index, left_elbow_index, left_wrist_index = person[[5, 6, 7]]
            x1, y1 = candidate[left_shoulder_index][:2]
            x2, y2 = candidate[left_elbow_index][:2]
            x3, y3 = candidate[left_wrist_index][:2]
            hands.append([x1, y1, x2, y2, x3, y3, True])
        # right hand
        if has_right:
            right_shoulder_index, right_elbow_index, right_wrist_index = person[[2, 3, 4]]
            x1, y1 = candidate[right_shoulder_index][:2]
            x2, y2 = candidate[right_elbow_index][:2]
            x3, y3 = candidate[right_wrist_index][:2]
            hands.append([x1, y1, x2, y2, x3, y3, False])

        for x1, y1, x2, y2, x3, y3, is_left in hands:
            # pos_hand = pos_wrist + ratio * (pos_wrist - pos_elbox) = (1 + ratio) * pos_wrist - ratio * pos_elbox
            # handRectangle.x = posePtr[wrist*3] + ratioWristElbow * (posePtr[wrist*3] - posePtr[elbow*3]);
            # handRectangle.y = posePtr[wrist*3+1] + ratioWristElbow * (posePtr[wrist*3+1] - posePtr[elbow*3+1]);
            # const auto distanceWristElbow = getDistance(poseKeypoints, person, wrist, elbow);
            # const auto distanceElbowShoulder = getDistance(poseKeypoints, person, elbow, shoulder);
            # handRectangle.width = 1.5f * fastMax(distanceWristElbow, 0.9f * distanceElbowShoulder);
            x = x3 + ratioWristElbow * (x3 - x2)
            y = y3 + ratioWristElbow * (y3 - y2)
            distanceWristElbow = math.sqrt((x3 - x2) ** 2 + (y3 - y2) ** 2)
            distanceElbowShoulder = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
            width = 1.5 * max(distanceWristElbow, 0.9 * distanceElbowShoulder)
            # x-y refers to the center --> offset to topLeft point
            # handRectangle.x -= handRectangle.width / 2.f;
            # handRectangle.y -= handRectangle.height / 2.f;
            x -= width / 2
            y -= width / 2  # width = height
            # overflow the image
            if x < 0: x = 0
            if y < 0: y = 0
            width1 = width
            width2 = width
            if x + width > image_width: width1 = image_width - x
            if y + width > image_height: width2 = image_height - y
            width = min(width1, width2)
            # the max hand box value is 20 pixels
            if width >= 20:
                detect_result.append([int(x), int(y), int(width), is_left])

    '''
    return value: [[x, y, w, True if left hand else False]].
    width=height since the network require squared input.
    x, y is the coordinate of top left 
    '''
    return detect_result


# Written by Lvmin
def faceDetect(candidate, subset, oriImg):
    # left right eye ear 14 15 16 17
    detect_result = []
    image_height, image_width = oriImg.shape[0:2]
    for person in subset.astype(int):
        has_head = person[0] > -1
        if not has_head:
            continue

        has_left_eye = person[14] > -1
        has_right_eye = person[15] > -1
        has_left_ear = person[16] > -1
        has_right_ear = person[17] > -1

        if not (has_left_eye or has_right_eye or has_left_ear or has_right_ear):
            continue

        head, left_eye, right_eye, left_ear, right_ear = person[[0, 14, 15, 16, 17]]

        width = 0.0
        x0, y0 = candidate[head][:2]

        if has_left_eye:
            x1, y1 = candidate[left_eye][:2]
            d = max(abs(x0 - x1), abs(y0 - y1))
            width = max(width, d * 3.0)

        if has_right_eye:
            x1, y1 = candidate[right_eye][:2]
            d = max(abs(x0 - x1), abs(y0 - y1))
            width = max(width, d * 3.0)

        if has_left_ear:
            x1, y1 = candidate[left_ear][:2]
            d = max(abs(x0 - x1), abs(y0 - y1))
            width = max(width, d * 1.5)

        if has_right_ear:
            x1, y1 = candidate[right_ear][:2]
            d = max(abs(x0 - x1), abs(y0 - y1))
            width = max(width, d * 1.5)

        x, y = x0, y0

        x -= width
        y -= width

        if x < 0:
            x = 0

        if y < 0:
            y = 0

        width1 = width * 2
        width2 = width * 2

        if x + width > image_width:
            width1 = image_width - x

        if y + width > image_height:
            width2 = image_height - y

        width = min(width1, width2)

        if width >= 20:
            detect_result.append([int(x), int(y), int(width)])

    return detect_result


# get max index of 2d array
def npmax(array):
    arrayindex = array.argmax(1)
    arrayvalue = array.max(1)
    i = arrayvalue.argmax()
    j = arrayindex[i]
    return i, j