feishen29 commited on
Commit
344320c
1 Parent(s): 826f84d

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -10
app.py CHANGED
@@ -74,19 +74,19 @@ args = parser.parse_args()
74
 
75
  args.device = "cuda"
76
 
77
- base_path = 'feishen29/IMAGDressing-v1'
78
 
79
 
80
- vae = AutoencoderKL.from_pretrained('./ckpt/sd-vae-ft-mse/').to(dtype=torch.float16, device=args.device)
81
- tokenizer = CLIPTokenizer.from_pretrained("./ckpt/tokenizer")
82
- text_encoder = CLIPTextModel.from_pretrained("./ckpt/text_encoder").to(dtype=torch.float16, device=args.device)
83
- image_encoder = CLIPVisionModelWithProjection.from_pretrained('./ckpt/image_encoder/').to(dtype=torch.float16, device=args.device)
84
- unet = UNet2DConditionModel.from_pretrained("./ckpt/unet").to(dtype=torch.float16,device=args.device)
85
 
86
  # image_face_fusion = pipeline('face_fusion_torch', model='damo/cv_unet_face_fusion_torch', model_revision='v1.0.3')
87
 
88
  #face_model
89
- app = FaceAnalysis(model_path='./ckpt/buffalo_l.zip', providers=[('CUDAExecutionProvider', {"device_id": args.device})]) ##使用GPU:0, 默认使用buffalo_l就可以了
90
  app.prepare(ctx_id=0, det_size=(640, 640))
91
 
92
  # def ref proj weight
@@ -126,7 +126,7 @@ adapter_modules = torch.nn.ModuleList(unet.attn_processors.values())
126
  adapter_modules = adapter_modules.to(dtype=torch.float16, device=args.device)
127
  del st
128
 
129
- ref_unet = UNet2DConditionModel.from_pretrained("./ckpt/unet").to(
130
  dtype=torch.float16,
131
  device=args.device)
132
  ref_unet.set_attn_processor(
@@ -167,7 +167,7 @@ noise_scheduler = DDIMScheduler(
167
  # noise_scheduler = UniPCMultistepScheduler.from_config(args.pretrained_model_name_or_path, subfolder="scheduler")
168
 
169
  control_net_openpose = ControlNetModel.from_pretrained(
170
- "./ckpt/control_v11p_sd15_openpose",
171
  torch_dtype=torch.float16).to(device=args.device)
172
  # pipe = PipIpaControlNet(unet=unet, reference_unet=ref_unet, vae=vae, tokenizer=tokenizer,
173
  # text_encoder=text_encoder, image_encoder=image_encoder,
@@ -183,7 +183,7 @@ img_transform = transforms.Compose([
183
  transforms.Normalize([0.5], [0.5]),
184
  ])
185
 
186
- openpose_model = OpenposeDetector.from_pretrained("./ckpt/ControlNet").to(args.device)
187
 
188
  def resize_img(input_image, max_side=640, min_side=512, size=None,
189
  pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64):
 
74
 
75
  args.device = "cuda"
76
 
77
+ # base_path = 'feishen29/IMAGDressing-v1'
78
 
79
 
80
+ vae = AutoencoderKL.from_pretrained('stabilityai/sd-vae-ft-mse').to(dtype=torch.float16, device=args.device)
81
+ tokenizer = CLIPTokenizer.from_pretrained("SG161222/Realistic_Vision_V4.0_noVAE", subfolder="tokenizer")
82
+ text_encoder = CLIPTextModel.from_pretrained("SG161222/Realistic_Vision_V4.0_noVAE", subfolder="text_encoder").to(dtype=torch.float16, device=args.device)
83
+ image_encoder = CLIPVisionModelWithProjection.from_pretrained("h94/IP-Adapter", subfolder="models/image_encoder").to(dtype=torch.float16, device=args.device)
84
+ unet = UNet2DConditionModel.from_pretrained("SG161222/Realistic_Vision_V4.0_noVAE", subfolder="unet").to(dtype=torch.float16,device=args.device)
85
 
86
  # image_face_fusion = pipeline('face_fusion_torch', model='damo/cv_unet_face_fusion_torch', model_revision='v1.0.3')
87
 
88
  #face_model
89
+ app = FaceAnalysis(model_path="buffalo_l", providers=[('CUDAExecutionProvider', {"device_id": args.device})]) ##使用GPU:0, 默认使用buffalo_l就可以了
90
  app.prepare(ctx_id=0, det_size=(640, 640))
91
 
92
  # def ref proj weight
 
126
  adapter_modules = adapter_modules.to(dtype=torch.float16, device=args.device)
127
  del st
128
 
129
+ ref_unet = UNet2DConditionModel.from_pretrained("SG161222/Realistic_Vision_V4.0_noVAE", subfolder="unet").to(
130
  dtype=torch.float16,
131
  device=args.device)
132
  ref_unet.set_attn_processor(
 
167
  # noise_scheduler = UniPCMultistepScheduler.from_config(args.pretrained_model_name_or_path, subfolder="scheduler")
168
 
169
  control_net_openpose = ControlNetModel.from_pretrained(
170
+ "lllyasviel/control_v11p_sd15_openpose",
171
  torch_dtype=torch.float16).to(device=args.device)
172
  # pipe = PipIpaControlNet(unet=unet, reference_unet=ref_unet, vae=vae, tokenizer=tokenizer,
173
  # text_encoder=text_encoder, image_encoder=image_encoder,
 
183
  transforms.Normalize([0.5], [0.5]),
184
  ])
185
 
186
+ openpose_model = OpenposeDetector.from_pretrained('lllyasviel/ControlNet').to(args.device)
187
 
188
  def resize_img(input_image, max_side=640, min_side=512, size=None,
189
  pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64):