Spaces:
Sleeping
Sleeping
from transformers import BlipForConditionalGeneration | |
from transformers import AutoProcessor | |
from PIL import Image | |
import requests | |
import gradio as gr | |
url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
image = Image.open(requests.get(url, stream=True).raw).convert("RGB") | |
processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base") | |
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") | |
image = processor(image, return_tensors="pt") | |
generated_ids = model.generate(**image) | |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() | |
print(generated_text) | |
def launch(input): | |
url = input | |
image = Image.open(requests.get(url, stream=True).raw).convert("RGB") | |
processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base") | |
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") | |
image = processor(image, return_tensors="pt") | |
generated_ids = model.generate(**image) | |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() | |
return generated_text | |
iface = gr.Interface(fn=launch, inputs="text", outputs="text") | |
iface.launch() | |