# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn.functional as F from typing import Optional, Tuple EPS = 1e-6 def smart_cat(tensor1, tensor2, dim): if tensor1 is None: return tensor2 return torch.cat([tensor1, tensor2], dim=dim) def get_points_on_a_grid( size: int, extent: Tuple[float, ...], center: Optional[Tuple[float, ...]] = None, device: Optional[torch.device] = torch.device("cpu"), shift_grid: bool = False, ): r"""Get a grid of points covering a rectangular region `get_points_on_a_grid(size, extent)` generates a :attr:`size` by :attr:`size` grid fo points distributed to cover a rectangular area specified by `extent`. The `extent` is a pair of integer :math:`(H,W)` specifying the height and width of the rectangle. Optionally, the :attr:`center` can be specified as a pair :math:`(c_y,c_x)` specifying the vertical and horizontal center coordinates. The center defaults to the middle of the extent. Points are distributed uniformly within the rectangle leaving a margin :math:`m=W/64` from the border. It returns a :math:`(1, \text{size} \times \text{size}, 2)` tensor of points :math:`P_{ij}=(x_i, y_i)` where .. math:: P_{ij} = \left( c_x + m -\frac{W}{2} + \frac{W - 2m}{\text{size} - 1}\, j,~ c_y + m -\frac{H}{2} + \frac{H - 2m}{\text{size} - 1}\, i \right) Points are returned in row-major order. Args: size (int): grid size. extent (tuple): height and with of the grid extent. center (tuple, optional): grid center. device (str, optional): Defaults to `"cpu"`. Returns: Tensor: grid. """ if size == 1: return torch.tensor([extent[1] / 2, extent[0] / 2], device=device)[None, None] if center is None: center = [extent[0] / 2, extent[1] / 2] margin = extent[1] / 64 range_y = (margin - extent[0] / 2 + center[0], extent[0] / 2 + center[0] - margin) range_x = (margin - extent[1] / 2 + center[1], extent[1] / 2 + center[1] - margin) grid_y, grid_x = torch.meshgrid( torch.linspace(*range_y, size, device=device), torch.linspace(*range_x, size, device=device), indexing="ij", ) if shift_grid: # shift the grid randomly # grid_x: (10, 10) # grid_y: (10, 10) shift_x = (range_x[1] - range_x[0]) / (size - 1) shift_y = (range_y[1] - range_y[0]) / (size - 1) grid_x = grid_x + torch.randn_like(grid_x) / 3 * shift_x / 2 grid_y = grid_y + torch.randn_like(grid_y) / 3 * shift_y / 2 # stay within the bounds grid_x = torch.clamp(grid_x, range_x[0], range_x[1]) grid_y = torch.clamp(grid_y, range_y[0], range_y[1]) return torch.stack([grid_x, grid_y], dim=-1).reshape(1, -1, 2) def reduce_masked_mean(input, mask, dim=None, keepdim=False): r"""Masked mean `reduce_masked_mean(x, mask)` computes the mean of a tensor :attr:`input` over a mask :attr:`mask`, returning .. math:: \text{output} = \frac {\sum_{i=1}^N \text{input}_i \cdot \text{mask}_i} {\epsilon + \sum_{i=1}^N \text{mask}_i} where :math:`N` is the number of elements in :attr:`input` and :attr:`mask`, and :math:`\epsilon` is a small constant to avoid division by zero. `reduced_masked_mean(x, mask, dim)` computes the mean of a tensor :attr:`input` over a mask :attr:`mask` along a dimension :attr:`dim`. Optionally, the dimension can be kept in the output by setting :attr:`keepdim` to `True`. Tensor :attr:`mask` must be broadcastable to the same dimension as :attr:`input`. The interface is similar to `torch.mean()`. Args: inout (Tensor): input tensor. mask (Tensor): mask. dim (int, optional): Dimension to sum over. Defaults to None. keepdim (bool, optional): Keep the summed dimension. Defaults to False. Returns: Tensor: mean tensor. """ mask = mask.expand_as(input) prod = input * mask if dim is None: numer = torch.sum(prod) denom = torch.sum(mask) else: numer = torch.sum(prod, dim=dim, keepdim=keepdim) denom = torch.sum(mask, dim=dim, keepdim=keepdim) mean = numer / (EPS + denom) return mean def bilinear_sampler(input, coords, align_corners=True, padding_mode="border"): r"""Sample a tensor using bilinear interpolation `bilinear_sampler(input, coords)` samples a tensor :attr:`input` at coordinates :attr:`coords` using bilinear interpolation. It is the same as `torch.nn.functional.grid_sample()` but with a different coordinate convention. The input tensor is assumed to be of shape :math:`(B, C, H, W)`, where :math:`B` is the batch size, :math:`C` is the number of channels, :math:`H` is the height of the image, and :math:`W` is the width of the image. The tensor :attr:`coords` of shape :math:`(B, H_o, W_o, 2)` is interpreted as an array of 2D point coordinates :math:`(x_i,y_i)`. Alternatively, the input tensor can be of size :math:`(B, C, T, H, W)`, in which case sample points are triplets :math:`(t_i,x_i,y_i)`. Note that in this case the order of the components is slightly different from `grid_sample()`, which would expect :math:`(x_i,y_i,t_i)`. If `align_corners` is `True`, the coordinate :math:`x` is assumed to be in the range :math:`[0,W-1]`, with 0 corresponding to the center of the left-most image pixel :math:`W-1` to the center of the right-most pixel. If `align_corners` is `False`, the coordinate :math:`x` is assumed to be in the range :math:`[0,W]`, with 0 corresponding to the left edge of the left-most pixel :math:`W` to the right edge of the right-most pixel. Similar conventions apply to the :math:`y` for the range :math:`[0,H-1]` and :math:`[0,H]` and to :math:`t` for the range :math:`[0,T-1]` and :math:`[0,T]`. Args: input (Tensor): batch of input images. coords (Tensor): batch of coordinates. align_corners (bool, optional): Coordinate convention. Defaults to `True`. padding_mode (str, optional): Padding mode. Defaults to `"border"`. Returns: Tensor: sampled points. """ sizes = input.shape[2:] assert len(sizes) in [2, 3] if len(sizes) == 3: # t x y -> x y t to match dimensions T H W in grid_sample coords = coords[..., [1, 2, 0]] if align_corners: coords = coords * torch.tensor( [2 / max(size - 1, 1) for size in reversed(sizes)], device=coords.device ) else: coords = coords * torch.tensor([2 / size for size in reversed(sizes)], device=coords.device) coords -= 1 return F.grid_sample(input, coords, align_corners=align_corners, padding_mode=padding_mode) def sample_features4d(input, coords): r"""Sample spatial features `sample_features4d(input, coords)` samples the spatial features :attr:`input` represented by a 4D tensor :math:`(B, C, H, W)`. The field is sampled at coordinates :attr:`coords` using bilinear interpolation. :attr:`coords` is assumed to be of shape :math:`(B, R, 3)`, where each sample has the format :math:`(x_i, y_i)`. This uses the same convention as :func:`bilinear_sampler` with `align_corners=True`. The output tensor has one feature per point, and has shape :math:`(B, R, C)`. Args: input (Tensor): spatial features. coords (Tensor): points. Returns: Tensor: sampled features. """ B, _, _, _ = input.shape # B R 2 -> B R 1 2 coords = coords.unsqueeze(2) # B C R 1 feats = bilinear_sampler(input, coords) return feats.permute(0, 2, 1, 3).view( B, -1, feats.shape[1] * feats.shape[3] ) # B C R 1 -> B R C def sample_features5d(input, coords): r"""Sample spatio-temporal features `sample_features5d(input, coords)` works in the same way as :func:`sample_features4d` but for spatio-temporal features and points: :attr:`input` is a 5D tensor :math:`(B, T, C, H, W)`, :attr:`coords` is a :math:`(B, R1, R2, 3)` tensor of spatio-temporal point :math:`(t_i, x_i, y_i)`. The output tensor has shape :math:`(B, R1, R2, C)`. Args: input (Tensor): spatio-temporal features. coords (Tensor): spatio-temporal points. Returns: Tensor: sampled features. """ B, T, _, _, _ = input.shape # B T C H W -> B C T H W input = input.permute(0, 2, 1, 3, 4) # B R1 R2 3 -> B R1 R2 1 3 coords = coords.unsqueeze(3) # B C R1 R2 1 feats = bilinear_sampler(input, coords) return feats.permute(0, 2, 3, 1, 4).view( B, feats.shape[2], feats.shape[3], feats.shape[1] ) # B C R1 R2 1 -> B R1 R2 C