# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import unittest from cotracker.models.core.model_utils import bilinear_sampler class TestBilinearSampler(unittest.TestCase): # Sample from an image (4d) def _test4d(self, align_corners): H, W = 4, 5 # Construct a grid to obtain indentity sampling input = torch.randn(H * W).view(1, 1, H, W).float() coords = torch.meshgrid(torch.arange(H), torch.arange(W)) coords = torch.stack(coords[::-1], dim=-1).float()[None] if not align_corners: coords = coords + 0.5 sampled_input = bilinear_sampler(input, coords, align_corners=align_corners) torch.testing.assert_close(input, sampled_input) # Sample from a video (5d) def _test5d(self, align_corners): T, H, W = 3, 4, 5 # Construct a grid to obtain indentity sampling input = torch.randn(H * W).view(1, 1, H, W).float() input = torch.stack([input, input + 1, input + 2], dim=2) coords = torch.meshgrid(torch.arange(T), torch.arange(W), torch.arange(H)) coords = torch.stack(coords, dim=-1).float().permute(0, 2, 1, 3)[None] if not align_corners: coords = coords + 0.5 sampled_input = bilinear_sampler(input, coords, align_corners=align_corners) torch.testing.assert_close(input, sampled_input) def test4d(self): self._test4d(align_corners=True) self._test4d(align_corners=False) def test5d(self): self._test5d(align_corners=True) self._test5d(align_corners=False) # run the test unittest.main()