Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
2 |
|
3 |
-
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from huggingface_hub import hf_hub_download
|
3 |
+
os.system("pip -qq install facenet_pytorch")
|
4 |
+
from facenet_pytorch import MTCNN
|
5 |
+
from torchvision import transforms
|
6 |
+
import torch, PIL
|
7 |
+
from tqdm.notebook import tqdm
|
8 |
import gradio as gr
|
9 |
+
import torch
|
10 |
|
11 |
+
modelarcanev4 = hf_hub_download(repo_id="akhaliq/ArcaneGANv0.4", filename="ArcaneGANv0.4.jit")
|
12 |
+
modelarcanev3 = hf_hub_download(repo_id="akhaliq/ArcaneGANv0.3", filename="ArcaneGANv0.3.jit")
|
13 |
+
modelarcanev2 = hf_hub_download(repo_id="akhaliq/ArcaneGANv0.2", filename="ArcaneGANv0.2.jit")
|
14 |
+
|
15 |
+
|
16 |
+
mtcnn = MTCNN(image_size=256, margin=80)
|
17 |
+
|
18 |
+
# simplest ye olde trustworthy MTCNN for face detection with landmarks
|
19 |
+
def detect(img):
|
20 |
+
|
21 |
+
# Detect faces
|
22 |
+
batch_boxes, batch_probs, batch_points = mtcnn.detect(img, landmarks=True)
|
23 |
+
# Select faces
|
24 |
+
if not mtcnn.keep_all:
|
25 |
+
batch_boxes, batch_probs, batch_points = mtcnn.select_boxes(
|
26 |
+
batch_boxes, batch_probs, batch_points, img, method=mtcnn.selection_method
|
27 |
+
)
|
28 |
+
|
29 |
+
return batch_boxes, batch_points
|
30 |
+
|
31 |
+
# my version of isOdd, should make a separate repo for it :D
|
32 |
+
def makeEven(_x):
|
33 |
+
return _x if (_x % 2 == 0) else _x+1
|
34 |
+
|
35 |
+
# the actual scaler function
|
36 |
+
def scale(boxes, _img, max_res=1_500_000, target_face=256, fixed_ratio=0, max_upscale=2, VERBOSE=False):
|
37 |
+
|
38 |
+
x, y = _img.size
|
39 |
+
|
40 |
+
ratio = 2 #initial ratio
|
41 |
+
|
42 |
+
#scale to desired face size
|
43 |
+
if (boxes is not None):
|
44 |
+
if len(boxes)>0:
|
45 |
+
ratio = target_face/max(boxes[0][2:]-boxes[0][:2]);
|
46 |
+
ratio = min(ratio, max_upscale)
|
47 |
+
if VERBOSE: print('up by', ratio)
|
48 |
+
|
49 |
+
if fixed_ratio>0:
|
50 |
+
if VERBOSE: print('fixed ratio')
|
51 |
+
ratio = fixed_ratio
|
52 |
+
|
53 |
+
x*=ratio
|
54 |
+
y*=ratio
|
55 |
+
|
56 |
+
#downscale to fit into max res
|
57 |
+
res = x*y
|
58 |
+
if res > max_res:
|
59 |
+
ratio = pow(res/max_res,1/2);
|
60 |
+
if VERBOSE: print(ratio)
|
61 |
+
x=int(x/ratio)
|
62 |
+
y=int(y/ratio)
|
63 |
+
|
64 |
+
#make dimensions even, because usually NNs fail on uneven dimensions due skip connection size mismatch
|
65 |
+
x = makeEven(int(x))
|
66 |
+
y = makeEven(int(y))
|
67 |
+
|
68 |
+
size = (x, y)
|
69 |
+
|
70 |
+
return _img.resize(size)
|
71 |
+
|
72 |
+
"""
|
73 |
+
A useful scaler algorithm, based on face detection.
|
74 |
+
Takes PIL.Image, returns a uniformly scaled PIL.Image
|
75 |
+
boxes: a list of detected bboxes
|
76 |
+
_img: PIL.Image
|
77 |
+
max_res: maximum pixel area to fit into. Use to stay below the VRAM limits of your GPU.
|
78 |
+
target_face: desired face size. Upscale or downscale the whole image to fit the detected face into that dimension.
|
79 |
+
fixed_ratio: fixed scale. Ignores the face size, but doesn't ignore the max_res limit.
|
80 |
+
max_upscale: maximum upscale ratio. Prevents from scaling images with tiny faces to a blurry mess.
|
81 |
+
"""
|
82 |
+
|
83 |
+
def scale_by_face_size(_img, max_res=1_500_000, target_face=256, fix_ratio=0, max_upscale=2, VERBOSE=False):
|
84 |
+
boxes = None
|
85 |
+
boxes, _ = detect(_img)
|
86 |
+
if VERBOSE: print('boxes',boxes)
|
87 |
+
img_resized = scale(boxes, _img, max_res, target_face, fix_ratio, max_upscale, VERBOSE)
|
88 |
+
return img_resized
|
89 |
+
|
90 |
+
|
91 |
+
size = 256
|
92 |
+
|
93 |
+
means = [0.485, 0.456, 0.406]
|
94 |
+
stds = [0.229, 0.224, 0.225]
|
95 |
+
|
96 |
+
t_stds = torch.tensor(stds).cuda().half()[:,None,None]
|
97 |
+
t_means = torch.tensor(means).cuda().half()[:,None,None]
|
98 |
+
|
99 |
+
def makeEven(_x):
|
100 |
+
return int(_x) if (_x % 2 == 0) else int(_x+1)
|
101 |
+
|
102 |
+
img_transforms = transforms.Compose([
|
103 |
+
transforms.ToTensor(),
|
104 |
+
transforms.Normalize(means,stds)])
|
105 |
+
|
106 |
+
def tensor2im(var):
|
107 |
+
return var.mul(t_stds).add(t_means).mul(255.).clamp(0,255).permute(1,2,0)
|
108 |
+
|
109 |
+
def proc_pil_img(input_image, model):
|
110 |
+
transformed_image = img_transforms(input_image)[None,...].cuda().half()
|
111 |
+
|
112 |
+
with torch.no_grad():
|
113 |
+
result_image = model(transformed_image)[0]
|
114 |
+
output_image = tensor2im(result_image)
|
115 |
+
output_image = output_image.detach().cpu().numpy().astype('uint8')
|
116 |
+
output_image = PIL.Image.fromarray(output_image)
|
117 |
+
return output_image
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
modelv4 = torch.jit.load(modelarcanev4).eval().cuda().half()
|
122 |
+
modelv3 = torch.jit.load(modelarcanev3).eval().cuda().half()
|
123 |
+
modelv2 = torch.jit.load(modelarcanev2).eval().cuda().half()
|
124 |
+
|
125 |
+
def process(im, version):
|
126 |
+
if version == 'version 0.4':
|
127 |
+
im = scale_by_face_size(im, target_face=256, max_res=1_500_000, max_upscale=1)
|
128 |
+
res = proc_pil_img(im, modelv4)
|
129 |
+
elif version == 'version 0.3':
|
130 |
+
im = scale_by_face_size(im, target_face=256, max_res=1_500_000, max_upscale=1)
|
131 |
+
res = proc_pil_img(im, modelv3)
|
132 |
+
else:
|
133 |
+
im = scale_by_face_size(im, target_face=256, max_res=1_500_000, max_upscale=1)
|
134 |
+
res = proc_pil_img(im, modelv2)
|
135 |
+
return res
|
136 |
+
|
137 |
+
title = "ArcaneGAN"
|
138 |
+
description = "Gradio demo for ArcaneGAN, portrait to Arcane style. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
|
139 |
+
article = "<div style='text-align: center;'>ArcaneGan by <a href='https://twitter.com/devdef' target='_blank'>Alexander S</a> | <a href='https://github.com/Sxela/ArcaneGAN' target='_blank'>Github Repo</a> | <center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_arcanegan' alt='visitor badge'></center></div>"
|
140 |
+
|
141 |
+
gr.Interface(
|
142 |
+
process,
|
143 |
+
[gr.inputs.Image(type="pil", label="Input"),gr.inputs.Radio(choices=['version 0.2','version 0.3','version 0.4'], type="value", default='version 0.4', label='version')
|
144 |
+
],
|
145 |
+
gr.outputs.Image(type="pil", label="Output"),
|
146 |
+
title=title,
|
147 |
+
description=description,
|
148 |
+
article=article,
|
149 |
+
examples=[['bill.png','version 0.3'],['keanu.png','version 0.4'],['will.jpeg','version 0.4']],
|
150 |
+
allow_flagging=False,
|
151 |
+
allow_screenshot=False
|
152 |
+
).launch()
|