import os os.system("pip freeze") import torch import PIL import gradio as gr import torch from utils import align_face from torchvision import transforms from huggingface_hub import hf_hub_download device = "cuda:0" if torch.cuda.is_available() else "cpu" image_size = 512 transform_size = 1024 means = [0.5, 0.5, 0.5] stds = [0.5, 0.5, 0.5] img_transforms = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(means, stds)]) model_path = hf_hub_download(repo_id="jjeamin/ArcaneStyleTransfer", filename="pytorch_model.bin") if 'cuda' in device: style_transfer = torch.jit.load(model_path).eval().cuda().half() t_stds = torch.tensor(stds).cuda().half()[:,None,None] t_means = torch.tensor(means).cuda().half()[:,None,None] else: style_transfer = torch.jit.load(model_path).eval().cpu() t_stds = torch.tensor(stds).cpu()[:,None,None] t_means = torch.tensor(means).cpu()[:,None,None] def tensor2im(var): return var.mul(t_stds).add(t_means).mul(255.).clamp(0,255).permute(1,2,0) def proc_pil_img(input_image): if 'cuda' in device: transformed_image = img_transforms(input_image)[None,...].cuda().half() else: transformed_image = img_transforms(input_image)[None,...].cpu() with torch.no_grad(): result_image = style_transfer(transformed_image)[0] output_image = tensor2im(result_image) output_image = output_image.detach().cpu().numpy().astype('uint8') output_image = PIL.Image.fromarray(output_image) return output_image def process(im, is_align): im = PIL.ImageOps.exif_transpose(im) if is_align == 'True': im = align_face(im, output_size=image_size, transform_size=transform_size) else: pass res = proc_pil_img(im) return res gr.Interface( process, inputs=[gr.inputs.Image(source="webcam",type="pil", label="Input", shape=(image_size, image_size)), gr.inputs.Radio(['True','False'], type="value", default='True', label='face align')], outputs=gr.outputs.Image(type="pil", label="Output"), title="Arcane Style Transfer WEBCAM", description="Gradio demo for Arcane Style Transfer with webcam input", article = "