|
|
|
|
|
from __future__ import annotations |
|
|
|
import pathlib |
|
import random |
|
import shlex |
|
import subprocess |
|
import sys |
|
|
|
import cv2 |
|
import einops |
|
import numpy as np |
|
import torch |
|
from huggingface_hub import hf_hub_url |
|
from pytorch_lightning import seed_everything |
|
|
|
sys.path.append('ControlNet') |
|
|
|
import config |
|
from annotator.canny import apply_canny |
|
from annotator.hed import apply_hed, nms |
|
from annotator.midas import apply_midas |
|
from annotator.mlsd import apply_mlsd |
|
from annotator.openpose import apply_openpose |
|
from annotator.uniformer import apply_uniformer |
|
from annotator.util import HWC3, resize_image |
|
from cldm.model import create_model, load_state_dict |
|
from ldm.models.diffusion.ddim import DDIMSampler |
|
from share import * |
|
|
|
|
|
MODEL_NAMES = { |
|
'canny': 'control_canny-fp16.safetensors', |
|
'hough': 'control_mlsd-fp16.safetensors', |
|
'hed': 'control_hed-fp16.safetensors', |
|
'scribble': 'control_scribble-fp16.safetensors', |
|
'pose': 'control_openpose-fp16.safetensors', |
|
'seg': 'control_seg-fp16.safetensors', |
|
'depth': 'control_depth-fp16.safetensors', |
|
'normal': 'control_normal-fp16.safetensors', |
|
} |
|
|
|
MODEL_REPO = 'webui/ControlNet-modules-safetensors' |
|
|
|
DEFAULT_BASE_MODEL_REPO = 'runwayml/stable-diffusion-v1-5' |
|
DEFAULT_BASE_MODEL_FILENAME = 'v1-5-pruned-emaonly.safetensors' |
|
DEFAULT_BASE_MODEL_URL = 'https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.safetensors' |
|
|
|
class Model: |
|
def __init__(self, |
|
model_config_path: str = 'ControlNet/models/cldm_v15.yaml', |
|
model_dir: str = 'models'): |
|
self.device = torch.device( |
|
'cuda:0' if torch.cuda.is_available() else 'cpu') |
|
self.model = create_model(model_config_path).to(self.device) |
|
self.ddim_sampler = DDIMSampler(self.model) |
|
self.task_name = '' |
|
|
|
self.base_model_url = '' |
|
|
|
self.model_dir = pathlib.Path(model_dir) |
|
self.model_dir.mkdir(exist_ok=True, parents=True) |
|
|
|
self.download_models() |
|
self.set_base_model(DEFAULT_BASE_MODEL_REPO, |
|
DEFAULT_BASE_MODEL_FILENAME) |
|
|
|
def set_base_model(self, model_id: str, filename: str) -> str: |
|
if not model_id or not filename: |
|
return self.base_model_url |
|
base_model_url = hf_hub_url(model_id, filename) |
|
if base_model_url != self.base_model_url: |
|
self.load_base_model(base_model_url) |
|
self.base_model_url = base_model_url |
|
return self.base_model_url |
|
|
|
|
|
def download_base_model(self, model_url: str) -> pathlib.Path: |
|
self.model_dir.mkdir(exist_ok=True, parents=True) |
|
model_name = model_url.split('/')[-1] |
|
out_path = self.model_dir / model_name |
|
if not out_path.exists(): |
|
subprocess.run(shlex.split(f'wget {model_url} -O {out_path}')) |
|
return out_path |
|
|
|
def load_base_model(self, model_url: str) -> None: |
|
model_path = self.download_base_model(model_url) |
|
self.model.load_state_dict(load_state_dict(model_path, |
|
location=self.device.type), |
|
strict=False) |
|
|
|
def load_weight(self, task_name: str) -> None: |
|
if task_name == self.task_name: |
|
return |
|
weight_path = self.get_weight_path(task_name) |
|
self.model.control_model.load_state_dict( |
|
load_state_dict(weight_path, location=self.device.type)) |
|
self.task_name = task_name |
|
|
|
def get_weight_path(self, task_name: str) -> str: |
|
if 'scribble' in task_name: |
|
task_name = 'scribble' |
|
return f'{self.model_dir}/{MODEL_NAMES[task_name]}' |
|
|
|
def download_models(self) -> None: |
|
self.model_dir.mkdir(exist_ok=True, parents=True) |
|
for name in MODEL_NAMES.values(): |
|
out_path = self.model_dir / name |
|
if out_path.exists(): |
|
continue |
|
model_url = hf_hub_url(MODEL_REPO, name) |
|
subprocess.run(shlex.split(f'wget {model_url} -O {out_path}')) |
|
|
|
@torch.inference_mode() |
|
def process_canny(self, input_image, prompt, a_prompt, n_prompt, |
|
num_samples, image_resolution, ddim_steps, scale, seed, |
|
eta, low_threshold, high_threshold): |
|
self.load_weight('canny') |
|
|
|
img = resize_image(HWC3(input_image), image_resolution) |
|
H, W, C = img.shape |
|
|
|
detected_map = apply_canny(img, low_threshold, high_threshold) |
|
detected_map = HWC3(detected_map) |
|
|
|
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 |
|
control = torch.stack([control for _ in range(num_samples)], dim=0) |
|
control = einops.rearrange(control, 'b h w c -> b c h w').clone() |
|
|
|
if seed == -1: |
|
seed = random.randint(0, 65535) |
|
seed_everything(seed) |
|
|
|
if config.save_memory: |
|
self.model.low_vram_shift(is_diffusing=False) |
|
|
|
cond = { |
|
'c_concat': [control], |
|
'c_crossattn': [ |
|
self.model.get_learned_conditioning( |
|
[prompt + ', ' + a_prompt] * num_samples) |
|
] |
|
} |
|
un_cond = { |
|
'c_concat': [control], |
|
'c_crossattn': |
|
[self.model.get_learned_conditioning([n_prompt] * num_samples)] |
|
} |
|
shape = (4, H // 8, W // 8) |
|
|
|
if config.save_memory: |
|
self.model.low_vram_shift(is_diffusing=True) |
|
|
|
samples, intermediates = self.ddim_sampler.sample( |
|
ddim_steps, |
|
num_samples, |
|
shape, |
|
cond, |
|
verbose=False, |
|
eta=eta, |
|
unconditional_guidance_scale=scale, |
|
unconditional_conditioning=un_cond) |
|
|
|
if config.save_memory: |
|
self.model.low_vram_shift(is_diffusing=False) |
|
|
|
x_samples = self.model.decode_first_stage(samples) |
|
x_samples = ( |
|
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + |
|
127.5).cpu().numpy().clip(0, 255).astype(np.uint8) |
|
|
|
results = [x_samples[i] for i in range(num_samples)] |
|
return [255 - detected_map] + results |
|
|
|
@torch.inference_mode() |
|
def process_hough(self, input_image, prompt, a_prompt, n_prompt, |
|
num_samples, image_resolution, detect_resolution, |
|
ddim_steps, scale, seed, eta, value_threshold, |
|
distance_threshold): |
|
self.load_weight('hough') |
|
|
|
input_image = HWC3(input_image) |
|
detected_map = apply_mlsd(resize_image(input_image, detect_resolution), |
|
value_threshold, distance_threshold) |
|
detected_map = HWC3(detected_map) |
|
img = resize_image(input_image, image_resolution) |
|
H, W, C = img.shape |
|
|
|
detected_map = cv2.resize(detected_map, (W, H), |
|
interpolation=cv2.INTER_NEAREST) |
|
|
|
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 |
|
control = torch.stack([control for _ in range(num_samples)], dim=0) |
|
control = einops.rearrange(control, 'b h w c -> b c h w').clone() |
|
|
|
if seed == -1: |
|
seed = random.randint(0, 65535) |
|
seed_everything(seed) |
|
|
|
if config.save_memory: |
|
self.model.low_vram_shift(is_diffusing=False) |
|
|
|
cond = { |
|
'c_concat': [control], |
|
'c_crossattn': [ |
|
self.model.get_learned_conditioning( |
|
[prompt + ', ' + a_prompt] * num_samples) |
|
] |
|
} |
|
un_cond = { |
|
'c_concat': [control], |
|
'c_crossattn': |
|
[self.model.get_learned_conditioning([n_prompt] * num_samples)] |
|
} |
|
shape = (4, H // 8, W // 8) |
|
|
|
if config.save_memory: |
|
self.model.low_vram_shift(is_diffusing=True) |
|
|
|
samples, intermediates = self.ddim_sampler.sample( |
|
ddim_steps, |
|
num_samples, |
|
shape, |
|
cond, |
|
verbose=False, |
|
eta=eta, |
|
unconditional_guidance_scale=scale, |
|
unconditional_conditioning=un_cond) |
|
|
|
if config.save_memory: |
|
self.model.low_vram_shift(is_diffusing=False) |
|
|
|
x_samples = self.model.decode_first_stage(samples) |
|
x_samples = ( |
|
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + |
|
127.5).cpu().numpy().clip(0, 255).astype(np.uint8) |
|
|
|
results = [x_samples[i] for i in range(num_samples)] |
|
return [ |
|
255 - cv2.dilate(detected_map, |
|
np.ones(shape=(3, 3), dtype=np.uint8), |
|
iterations=1) |
|
] + results |
|
|
|
@torch.inference_mode() |
|
def process_hed(self, input_image, prompt, a_prompt, n_prompt, num_samples, |
|
image_resolution, detect_resolution, ddim_steps, scale, |
|
seed, eta): |
|
self.load_weight('hed') |
|
|
|
input_image = HWC3(input_image) |
|
detected_map = apply_hed(resize_image(input_image, detect_resolution)) |
|
detected_map = HWC3(detected_map) |
|
img = resize_image(input_image, image_resolution) |
|
H, W, C = img.shape |
|
|
|
detected_map = cv2.resize(detected_map, (W, H), |
|
interpolation=cv2.INTER_LINEAR) |
|
|
|
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 |
|
control = torch.stack([control for _ in range(num_samples)], dim=0) |
|
control = einops.rearrange(control, 'b h w c -> b c h w').clone() |
|
|
|
if seed == -1: |
|
seed = random.randint(0, 65535) |
|
seed_everything(seed) |
|
|
|
if config.save_memory: |
|
self.model.low_vram_shift(is_diffusing=False) |
|
|
|
cond = { |
|
'c_concat': [control], |
|
'c_crossattn': [ |
|
self.model.get_learned_conditioning( |
|
[prompt + ', ' + a_prompt] * num_samples) |
|
] |
|
} |
|
un_cond = { |
|
'c_concat': [control], |
|
'c_crossattn': |
|
[self.model.get_learned_conditioning([n_prompt] * num_samples)] |
|
} |
|
shape = (4, H // 8, W // 8) |
|
|
|
if config.save_memory: |
|
self.model.low_vram_shift(is_diffusing=True) |
|
|
|
samples, intermediates = self.ddim_sampler.sample( |
|
ddim_steps, |
|
num_samples, |
|
shape, |
|
cond, |
|
verbose=False, |
|
eta=eta, |
|
unconditional_guidance_scale=scale, |
|
unconditional_conditioning=un_cond) |
|
|
|
if config.save_memory: |
|
self.model.low_vram_shift(is_diffusing=False) |
|
|
|
x_samples = self.model.decode_first_stage(samples) |
|
x_samples = ( |
|
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + |
|
127.5).cpu().numpy().clip(0, 255).astype(np.uint8) |
|
|
|
results = [x_samples[i] for i in range(num_samples)] |
|
return [detected_map] + results |
|
|
|
@torch.inference_mode() |
|
def process_scribble(self, input_image, prompt, a_prompt, n_prompt, |
|
num_samples, image_resolution, ddim_steps, scale, |
|
seed, eta): |
|
self.load_weight('scribble') |
|
|
|
img = resize_image(HWC3(input_image), image_resolution) |
|
H, W, C = img.shape |
|
|
|
detected_map = np.zeros_like(img, dtype=np.uint8) |
|
detected_map[np.min(img, axis=2) < 127] = 255 |
|
|
|
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 |
|
control = torch.stack([control for _ in range(num_samples)], dim=0) |
|
control = einops.rearrange(control, 'b h w c -> b c h w').clone() |
|
|
|
if seed == -1: |
|
seed = random.randint(0, 65535) |
|
seed_everything(seed) |
|
|
|
if config.save_memory: |
|
self.model.low_vram_shift(is_diffusing=False) |
|
|
|
cond = { |
|
'c_concat': [control], |
|
'c_crossattn': [ |
|
self.model.get_learned_conditioning( |
|
[prompt + ', ' + a_prompt] * num_samples) |
|
] |
|
} |
|
un_cond = { |
|
'c_concat': [control], |
|
'c_crossattn': |
|
[self.model.get_learned_conditioning([n_prompt] * num_samples)] |
|
} |
|
shape = (4, H // 8, W // 8) |
|
|
|
if config.save_memory: |
|
self.model.low_vram_shift(is_diffusing=True) |
|
|
|
samples, intermediates = self.ddim_sampler.sample( |
|
ddim_steps, |
|
num_samples, |
|
shape, |
|
cond, |
|
verbose=False, |
|
eta=eta, |
|
unconditional_guidance_scale=scale, |
|
unconditional_conditioning=un_cond) |
|
|
|
if config.save_memory: |
|
self.model.low_vram_shift(is_diffusing=False) |
|
|
|
x_samples = self.model.decode_first_stage(samples) |
|
x_samples = ( |
|
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + |
|
127.5).cpu().numpy().clip(0, 255).astype(np.uint8) |
|
|
|
results = [x_samples[i] for i in range(num_samples)] |
|
return [255 - detected_map] + results |
|
|
|
@torch.inference_mode() |
|
def process_scribble_interactive(self, input_image, prompt, a_prompt, |
|
n_prompt, num_samples, image_resolution, |
|
ddim_steps, scale, seed, eta): |
|
self.load_weight('scribble') |
|
|
|
img = resize_image(HWC3(input_image['mask'][:, :, 0]), |
|
image_resolution) |
|
H, W, C = img.shape |
|
|
|
detected_map = np.zeros_like(img, dtype=np.uint8) |
|
detected_map[np.min(img, axis=2) > 127] = 255 |
|
|
|
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 |
|
control = torch.stack([control for _ in range(num_samples)], dim=0) |
|
control = einops.rearrange(control, 'b h w c -> b c h w').clone() |
|
|
|
if seed == -1: |
|
seed = random.randint(0, 65535) |
|
seed_everything(seed) |
|
|
|
if config.save_memory: |
|
self.model.low_vram_shift(is_diffusing=False) |
|
|
|
cond = { |
|
'c_concat': [control], |
|
'c_crossattn': [ |
|
self.model.get_learned_conditioning( |
|
[prompt + ', ' + a_prompt] * num_samples) |
|
] |
|
} |
|
un_cond = { |
|
'c_concat': [control], |
|
'c_crossattn': |
|
[self.model.get_learned_conditioning([n_prompt] * num_samples)] |
|
} |
|
shape = (4, H // 8, W // 8) |
|
|
|
if config.save_memory: |
|
self.model.low_vram_shift(is_diffusing=True) |
|
|
|
samples, intermediates = self.ddim_sampler.sample( |
|
ddim_steps, |
|
num_samples, |
|
shape, |
|
cond, |
|
verbose=False, |
|
eta=eta, |
|
unconditional_guidance_scale=scale, |
|
unconditional_conditioning=un_cond) |
|
|
|
if config.save_memory: |
|
self.model.low_vram_shift(is_diffusing=False) |
|
|
|
x_samples = self.model.decode_first_stage(samples) |
|
x_samples = ( |
|
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + |
|
127.5).cpu().numpy().clip(0, 255).astype(np.uint8) |
|
|
|
results = [x_samples[i] for i in range(num_samples)] |
|
return [255 - detected_map] + results |
|
|
|
@torch.inference_mode() |
|
def process_fake_scribble(self, input_image, prompt, a_prompt, n_prompt, |
|
num_samples, image_resolution, detect_resolution, |
|
ddim_steps, scale, seed, eta): |
|
self.load_weight('scribble') |
|
|
|
input_image = HWC3(input_image) |
|
detected_map = apply_hed(resize_image(input_image, detect_resolution)) |
|
detected_map = HWC3(detected_map) |
|
img = resize_image(input_image, image_resolution) |
|
H, W, C = img.shape |
|
|
|
detected_map = cv2.resize(detected_map, (W, H), |
|
interpolation=cv2.INTER_LINEAR) |
|
detected_map = nms(detected_map, 127, 3.0) |
|
detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0) |
|
detected_map[detected_map > 4] = 255 |
|
detected_map[detected_map < 255] = 0 |
|
|
|
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 |
|
control = torch.stack([control for _ in range(num_samples)], dim=0) |
|
control = einops.rearrange(control, 'b h w c -> b c h w').clone() |
|
|
|
if seed == -1: |
|
seed = random.randint(0, 65535) |
|
seed_everything(seed) |
|
|
|
if config.save_memory: |
|
self.model.low_vram_shift(is_diffusing=False) |
|
|
|
cond = { |
|
'c_concat': [control], |
|
'c_crossattn': [ |
|
self.model.get_learned_conditioning( |
|
[prompt + ', ' + a_prompt] * num_samples) |
|
] |
|
} |
|
un_cond = { |
|
'c_concat': [control], |
|
'c_crossattn': |
|
[self.model.get_learned_conditioning([n_prompt] * num_samples)] |
|
} |
|
shape = (4, H // 8, W // 8) |
|
|
|
if config.save_memory: |
|
self.model.low_vram_shift(is_diffusing=True) |
|
|
|
samples, intermediates = self.ddim_sampler.sample( |
|
ddim_steps, |
|
num_samples, |
|
shape, |
|
cond, |
|
verbose=False, |
|
eta=eta, |
|
unconditional_guidance_scale=scale, |
|
unconditional_conditioning=un_cond) |
|
|
|
if config.save_memory: |
|
self.model.low_vram_shift(is_diffusing=False) |
|
|
|
x_samples = self.model.decode_first_stage(samples) |
|
x_samples = ( |
|
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + |
|
127.5).cpu().numpy().clip(0, 255).astype(np.uint8) |
|
|
|
results = [x_samples[i] for i in range(num_samples)] |
|
return [255 - detected_map] + results |
|
|
|
@torch.inference_mode() |
|
def process_pose(self, input_image, prompt, a_prompt, n_prompt, |
|
num_samples, image_resolution, detect_resolution, |
|
ddim_steps, scale, seed, eta): |
|
self.load_weight('pose') |
|
|
|
input_image = HWC3(input_image) |
|
detected_map, _ = apply_openpose( |
|
resize_image(input_image, detect_resolution)) |
|
detected_map = HWC3(detected_map) |
|
img = resize_image(input_image, image_resolution) |
|
H, W, C = img.shape |
|
|
|
detected_map = cv2.resize(detected_map, (W, H), |
|
interpolation=cv2.INTER_NEAREST) |
|
|
|
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 |
|
control = torch.stack([control for _ in range(num_samples)], dim=0) |
|
control = einops.rearrange(control, 'b h w c -> b c h w').clone() |
|
|
|
if seed == -1: |
|
seed = random.randint(0, 65535) |
|
seed_everything(seed) |
|
|
|
if config.save_memory: |
|
self.model.low_vram_shift(is_diffusing=False) |
|
|
|
cond = { |
|
'c_concat': [control], |
|
'c_crossattn': [ |
|
self.model.get_learned_conditioning( |
|
[prompt + ', ' + a_prompt] * num_samples) |
|
] |
|
} |
|
un_cond = { |
|
'c_concat': [control], |
|
'c_crossattn': |
|
[self.model.get_learned_conditioning([n_prompt] * num_samples)] |
|
} |
|
shape = (4, H // 8, W // 8) |
|
|
|
if config.save_memory: |
|
self.model.low_vram_shift(is_diffusing=True) |
|
|
|
samples, intermediates = self.ddim_sampler.sample( |
|
ddim_steps, |
|
num_samples, |
|
shape, |
|
cond, |
|
verbose=False, |
|
eta=eta, |
|
unconditional_guidance_scale=scale, |
|
unconditional_conditioning=un_cond) |
|
|
|
if config.save_memory: |
|
self.model.low_vram_shift(is_diffusing=False) |
|
|
|
x_samples = self.model.decode_first_stage(samples) |
|
x_samples = ( |
|
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + |
|
127.5).cpu().numpy().clip(0, 255).astype(np.uint8) |
|
|
|
results = [x_samples[i] for i in range(num_samples)] |
|
return [detected_map] + results |
|
|
|
@torch.inference_mode() |
|
def process_seg(self, input_image, prompt, a_prompt, n_prompt, num_samples, |
|
image_resolution, detect_resolution, ddim_steps, scale, |
|
seed, eta): |
|
self.load_weight('seg') |
|
|
|
input_image = HWC3(input_image) |
|
detected_map = apply_uniformer( |
|
resize_image(input_image, detect_resolution)) |
|
img = resize_image(input_image, image_resolution) |
|
H, W, C = img.shape |
|
|
|
detected_map = cv2.resize(detected_map, (W, H), |
|
interpolation=cv2.INTER_NEAREST) |
|
|
|
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 |
|
control = torch.stack([control for _ in range(num_samples)], dim=0) |
|
control = einops.rearrange(control, 'b h w c -> b c h w').clone() |
|
|
|
if seed == -1: |
|
seed = random.randint(0, 65535) |
|
seed_everything(seed) |
|
|
|
if config.save_memory: |
|
self.model.low_vram_shift(is_diffusing=False) |
|
|
|
cond = { |
|
'c_concat': [control], |
|
'c_crossattn': [ |
|
self.model.get_learned_conditioning( |
|
[prompt + ', ' + a_prompt] * num_samples) |
|
] |
|
} |
|
un_cond = { |
|
'c_concat': [control], |
|
'c_crossattn': |
|
[self.model.get_learned_conditioning([n_prompt] * num_samples)] |
|
} |
|
shape = (4, H // 8, W // 8) |
|
|
|
if config.save_memory: |
|
self.model.low_vram_shift(is_diffusing=True) |
|
|
|
samples, intermediates = self.ddim_sampler.sample( |
|
ddim_steps, |
|
num_samples, |
|
shape, |
|
cond, |
|
verbose=False, |
|
eta=eta, |
|
unconditional_guidance_scale=scale, |
|
unconditional_conditioning=un_cond) |
|
|
|
if config.save_memory: |
|
self.model.low_vram_shift(is_diffusing=False) |
|
|
|
x_samples = self.model.decode_first_stage(samples) |
|
x_samples = ( |
|
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + |
|
127.5).cpu().numpy().clip(0, 255).astype(np.uint8) |
|
|
|
results = [x_samples[i] for i in range(num_samples)] |
|
return [detected_map] + results |
|
|
|
@torch.inference_mode() |
|
def process_depth(self, input_image, prompt, a_prompt, n_prompt, |
|
num_samples, image_resolution, detect_resolution, |
|
ddim_steps, scale, seed, eta): |
|
self.load_weight('depth') |
|
|
|
input_image = HWC3(input_image) |
|
detected_map, _ = apply_midas( |
|
resize_image(input_image, detect_resolution)) |
|
detected_map = HWC3(detected_map) |
|
img = resize_image(input_image, image_resolution) |
|
H, W, C = img.shape |
|
|
|
detected_map = cv2.resize(detected_map, (W, H), |
|
interpolation=cv2.INTER_LINEAR) |
|
|
|
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 |
|
control = torch.stack([control for _ in range(num_samples)], dim=0) |
|
control = einops.rearrange(control, 'b h w c -> b c h w').clone() |
|
|
|
if seed == -1: |
|
seed = random.randint(0, 65535) |
|
seed_everything(seed) |
|
|
|
if config.save_memory: |
|
self.model.low_vram_shift(is_diffusing=False) |
|
|
|
cond = { |
|
'c_concat': [control], |
|
'c_crossattn': [ |
|
self.model.get_learned_conditioning( |
|
[prompt + ', ' + a_prompt] * num_samples) |
|
] |
|
} |
|
un_cond = { |
|
'c_concat': [control], |
|
'c_crossattn': |
|
[self.model.get_learned_conditioning([n_prompt] * num_samples)] |
|
} |
|
shape = (4, H // 8, W // 8) |
|
|
|
if config.save_memory: |
|
self.model.low_vram_shift(is_diffusing=True) |
|
|
|
samples, intermediates = self.ddim_sampler.sample( |
|
ddim_steps, |
|
num_samples, |
|
shape, |
|
cond, |
|
verbose=False, |
|
eta=eta, |
|
unconditional_guidance_scale=scale, |
|
unconditional_conditioning=un_cond) |
|
|
|
if config.save_memory: |
|
self.model.low_vram_shift(is_diffusing=False) |
|
|
|
x_samples = self.model.decode_first_stage(samples) |
|
x_samples = ( |
|
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + |
|
127.5).cpu().numpy().clip(0, 255).astype(np.uint8) |
|
|
|
results = [x_samples[i] for i in range(num_samples)] |
|
return [detected_map] + results |
|
|
|
@torch.inference_mode() |
|
def process_normal(self, input_image, prompt, a_prompt, n_prompt, |
|
num_samples, image_resolution, detect_resolution, |
|
ddim_steps, scale, seed, eta, bg_threshold): |
|
self.load_weight('normal') |
|
|
|
input_image = HWC3(input_image) |
|
_, detected_map = apply_midas(resize_image(input_image, |
|
detect_resolution), |
|
bg_th=bg_threshold) |
|
detected_map = HWC3(detected_map) |
|
img = resize_image(input_image, image_resolution) |
|
H, W, C = img.shape |
|
|
|
detected_map = cv2.resize(detected_map, (W, H), |
|
interpolation=cv2.INTER_LINEAR) |
|
|
|
control = torch.from_numpy( |
|
detected_map[:, :, ::-1].copy()).float().cuda() / 255.0 |
|
control = torch.stack([control for _ in range(num_samples)], dim=0) |
|
control = einops.rearrange(control, 'b h w c -> b c h w').clone() |
|
|
|
if seed == -1: |
|
seed = random.randint(0, 65535) |
|
seed_everything(seed) |
|
|
|
if config.save_memory: |
|
self.model.low_vram_shift(is_diffusing=False) |
|
|
|
cond = { |
|
'c_concat': [control], |
|
'c_crossattn': [ |
|
self.model.get_learned_conditioning( |
|
[prompt + ', ' + a_prompt] * num_samples) |
|
] |
|
} |
|
un_cond = { |
|
'c_concat': [control], |
|
'c_crossattn': |
|
[self.model.get_learned_conditioning([n_prompt] * num_samples)] |
|
} |
|
shape = (4, H // 8, W // 8) |
|
|
|
if config.save_memory: |
|
self.model.low_vram_shift(is_diffusing=True) |
|
|
|
samples, intermediates = self.ddim_sampler.sample( |
|
ddim_steps, |
|
num_samples, |
|
shape, |
|
cond, |
|
verbose=False, |
|
eta=eta, |
|
unconditional_guidance_scale=scale, |
|
unconditional_conditioning=un_cond) |
|
|
|
if config.save_memory: |
|
self.model.low_vram_shift(is_diffusing=False) |
|
|
|
x_samples = self.model.decode_first_stage(samples) |
|
x_samples = ( |
|
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + |
|
127.5).cpu().numpy().clip(0, 255).astype(np.uint8) |
|
|
|
results = [x_samples[i] for i in range(num_samples)] |
|
return [detected_map] + results |