ControlNet-Video / model.py
fffiloni's picture
Added custom models option
69952eb
# This file is adapted from gradio_*.py in https://github.com/lllyasviel/ControlNet/tree/f4748e3630d8141d7765e2bd9b1e348f47847707
# The original license file is LICENSE.ControlNet in this repo.
from __future__ import annotations
import pathlib
import random
import shlex
import subprocess
import sys
import cv2
import einops
import numpy as np
import torch
from huggingface_hub import hf_hub_url
from pytorch_lightning import seed_everything
sys.path.append('ControlNet')
import config
from annotator.canny import apply_canny
from annotator.hed import apply_hed, nms
from annotator.midas import apply_midas
from annotator.mlsd import apply_mlsd
from annotator.openpose import apply_openpose
from annotator.uniformer import apply_uniformer
from annotator.util import HWC3, resize_image
from cldm.model import create_model, load_state_dict
from ldm.models.diffusion.ddim import DDIMSampler
from share import *
MODEL_NAMES = {
'canny': 'control_canny-fp16.safetensors',
'hough': 'control_mlsd-fp16.safetensors',
'hed': 'control_hed-fp16.safetensors',
'scribble': 'control_scribble-fp16.safetensors',
'pose': 'control_openpose-fp16.safetensors',
'seg': 'control_seg-fp16.safetensors',
'depth': 'control_depth-fp16.safetensors',
'normal': 'control_normal-fp16.safetensors',
}
MODEL_REPO = 'webui/ControlNet-modules-safetensors'
DEFAULT_BASE_MODEL_REPO = 'runwayml/stable-diffusion-v1-5'
DEFAULT_BASE_MODEL_FILENAME = 'v1-5-pruned-emaonly.safetensors'
DEFAULT_BASE_MODEL_URL = 'https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.safetensors'
class Model:
def __init__(self,
model_config_path: str = 'ControlNet/models/cldm_v15.yaml',
model_dir: str = 'models'):
self.device = torch.device(
'cuda:0' if torch.cuda.is_available() else 'cpu')
self.model = create_model(model_config_path).to(self.device)
self.ddim_sampler = DDIMSampler(self.model)
self.task_name = ''
self.base_model_url = ''
self.model_dir = pathlib.Path(model_dir)
self.model_dir.mkdir(exist_ok=True, parents=True)
self.download_models()
self.set_base_model(DEFAULT_BASE_MODEL_REPO,
DEFAULT_BASE_MODEL_FILENAME)
def set_base_model(self, model_id: str, filename: str) -> str:
if not model_id or not filename:
return self.base_model_url
base_model_url = hf_hub_url(model_id, filename)
if base_model_url != self.base_model_url:
self.load_base_model(base_model_url)
self.base_model_url = base_model_url
return self.base_model_url
def download_base_model(self, model_url: str) -> pathlib.Path:
self.model_dir.mkdir(exist_ok=True, parents=True)
model_name = model_url.split('/')[-1]
out_path = self.model_dir / model_name
if not out_path.exists():
subprocess.run(shlex.split(f'wget {model_url} -O {out_path}'))
return out_path
def load_base_model(self, model_url: str) -> None:
model_path = self.download_base_model(model_url)
self.model.load_state_dict(load_state_dict(model_path,
location=self.device.type),
strict=False)
def load_weight(self, task_name: str) -> None:
if task_name == self.task_name:
return
weight_path = self.get_weight_path(task_name)
self.model.control_model.load_state_dict(
load_state_dict(weight_path, location=self.device.type))
self.task_name = task_name
def get_weight_path(self, task_name: str) -> str:
if 'scribble' in task_name:
task_name = 'scribble'
return f'{self.model_dir}/{MODEL_NAMES[task_name]}'
def download_models(self) -> None:
self.model_dir.mkdir(exist_ok=True, parents=True)
for name in MODEL_NAMES.values():
out_path = self.model_dir / name
if out_path.exists():
continue
model_url = hf_hub_url(MODEL_REPO, name)
subprocess.run(shlex.split(f'wget {model_url} -O {out_path}'))
@torch.inference_mode()
def process_canny(self, input_image, prompt, a_prompt, n_prompt,
num_samples, image_resolution, ddim_steps, scale, seed,
eta, low_threshold, high_threshold):
self.load_weight('canny')
img = resize_image(HWC3(input_image), image_resolution)
H, W, C = img.shape
detected_map = apply_canny(img, low_threshold, high_threshold)
detected_map = HWC3(detected_map)
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
control = torch.stack([control for _ in range(num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
if seed == -1:
seed = random.randint(0, 65535)
seed_everything(seed)
if config.save_memory:
self.model.low_vram_shift(is_diffusing=False)
cond = {
'c_concat': [control],
'c_crossattn': [
self.model.get_learned_conditioning(
[prompt + ', ' + a_prompt] * num_samples)
]
}
un_cond = {
'c_concat': [control],
'c_crossattn':
[self.model.get_learned_conditioning([n_prompt] * num_samples)]
}
shape = (4, H // 8, W // 8)
if config.save_memory:
self.model.low_vram_shift(is_diffusing=True)
samples, intermediates = self.ddim_sampler.sample(
ddim_steps,
num_samples,
shape,
cond,
verbose=False,
eta=eta,
unconditional_guidance_scale=scale,
unconditional_conditioning=un_cond)
if config.save_memory:
self.model.low_vram_shift(is_diffusing=False)
x_samples = self.model.decode_first_stage(samples)
x_samples = (
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
results = [x_samples[i] for i in range(num_samples)]
return [255 - detected_map] + results
@torch.inference_mode()
def process_hough(self, input_image, prompt, a_prompt, n_prompt,
num_samples, image_resolution, detect_resolution,
ddim_steps, scale, seed, eta, value_threshold,
distance_threshold):
self.load_weight('hough')
input_image = HWC3(input_image)
detected_map = apply_mlsd(resize_image(input_image, detect_resolution),
value_threshold, distance_threshold)
detected_map = HWC3(detected_map)
img = resize_image(input_image, image_resolution)
H, W, C = img.shape
detected_map = cv2.resize(detected_map, (W, H),
interpolation=cv2.INTER_NEAREST)
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
control = torch.stack([control for _ in range(num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
if seed == -1:
seed = random.randint(0, 65535)
seed_everything(seed)
if config.save_memory:
self.model.low_vram_shift(is_diffusing=False)
cond = {
'c_concat': [control],
'c_crossattn': [
self.model.get_learned_conditioning(
[prompt + ', ' + a_prompt] * num_samples)
]
}
un_cond = {
'c_concat': [control],
'c_crossattn':
[self.model.get_learned_conditioning([n_prompt] * num_samples)]
}
shape = (4, H // 8, W // 8)
if config.save_memory:
self.model.low_vram_shift(is_diffusing=True)
samples, intermediates = self.ddim_sampler.sample(
ddim_steps,
num_samples,
shape,
cond,
verbose=False,
eta=eta,
unconditional_guidance_scale=scale,
unconditional_conditioning=un_cond)
if config.save_memory:
self.model.low_vram_shift(is_diffusing=False)
x_samples = self.model.decode_first_stage(samples)
x_samples = (
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
results = [x_samples[i] for i in range(num_samples)]
return [
255 - cv2.dilate(detected_map,
np.ones(shape=(3, 3), dtype=np.uint8),
iterations=1)
] + results
@torch.inference_mode()
def process_hed(self, input_image, prompt, a_prompt, n_prompt, num_samples,
image_resolution, detect_resolution, ddim_steps, scale,
seed, eta):
self.load_weight('hed')
input_image = HWC3(input_image)
detected_map = apply_hed(resize_image(input_image, detect_resolution))
detected_map = HWC3(detected_map)
img = resize_image(input_image, image_resolution)
H, W, C = img.shape
detected_map = cv2.resize(detected_map, (W, H),
interpolation=cv2.INTER_LINEAR)
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
control = torch.stack([control for _ in range(num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
if seed == -1:
seed = random.randint(0, 65535)
seed_everything(seed)
if config.save_memory:
self.model.low_vram_shift(is_diffusing=False)
cond = {
'c_concat': [control],
'c_crossattn': [
self.model.get_learned_conditioning(
[prompt + ', ' + a_prompt] * num_samples)
]
}
un_cond = {
'c_concat': [control],
'c_crossattn':
[self.model.get_learned_conditioning([n_prompt] * num_samples)]
}
shape = (4, H // 8, W // 8)
if config.save_memory:
self.model.low_vram_shift(is_diffusing=True)
samples, intermediates = self.ddim_sampler.sample(
ddim_steps,
num_samples,
shape,
cond,
verbose=False,
eta=eta,
unconditional_guidance_scale=scale,
unconditional_conditioning=un_cond)
if config.save_memory:
self.model.low_vram_shift(is_diffusing=False)
x_samples = self.model.decode_first_stage(samples)
x_samples = (
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
results = [x_samples[i] for i in range(num_samples)]
return [detected_map] + results
@torch.inference_mode()
def process_scribble(self, input_image, prompt, a_prompt, n_prompt,
num_samples, image_resolution, ddim_steps, scale,
seed, eta):
self.load_weight('scribble')
img = resize_image(HWC3(input_image), image_resolution)
H, W, C = img.shape
detected_map = np.zeros_like(img, dtype=np.uint8)
detected_map[np.min(img, axis=2) < 127] = 255
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
control = torch.stack([control for _ in range(num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
if seed == -1:
seed = random.randint(0, 65535)
seed_everything(seed)
if config.save_memory:
self.model.low_vram_shift(is_diffusing=False)
cond = {
'c_concat': [control],
'c_crossattn': [
self.model.get_learned_conditioning(
[prompt + ', ' + a_prompt] * num_samples)
]
}
un_cond = {
'c_concat': [control],
'c_crossattn':
[self.model.get_learned_conditioning([n_prompt] * num_samples)]
}
shape = (4, H // 8, W // 8)
if config.save_memory:
self.model.low_vram_shift(is_diffusing=True)
samples, intermediates = self.ddim_sampler.sample(
ddim_steps,
num_samples,
shape,
cond,
verbose=False,
eta=eta,
unconditional_guidance_scale=scale,
unconditional_conditioning=un_cond)
if config.save_memory:
self.model.low_vram_shift(is_diffusing=False)
x_samples = self.model.decode_first_stage(samples)
x_samples = (
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
results = [x_samples[i] for i in range(num_samples)]
return [255 - detected_map] + results
@torch.inference_mode()
def process_scribble_interactive(self, input_image, prompt, a_prompt,
n_prompt, num_samples, image_resolution,
ddim_steps, scale, seed, eta):
self.load_weight('scribble')
img = resize_image(HWC3(input_image['mask'][:, :, 0]),
image_resolution)
H, W, C = img.shape
detected_map = np.zeros_like(img, dtype=np.uint8)
detected_map[np.min(img, axis=2) > 127] = 255
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
control = torch.stack([control for _ in range(num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
if seed == -1:
seed = random.randint(0, 65535)
seed_everything(seed)
if config.save_memory:
self.model.low_vram_shift(is_diffusing=False)
cond = {
'c_concat': [control],
'c_crossattn': [
self.model.get_learned_conditioning(
[prompt + ', ' + a_prompt] * num_samples)
]
}
un_cond = {
'c_concat': [control],
'c_crossattn':
[self.model.get_learned_conditioning([n_prompt] * num_samples)]
}
shape = (4, H // 8, W // 8)
if config.save_memory:
self.model.low_vram_shift(is_diffusing=True)
samples, intermediates = self.ddim_sampler.sample(
ddim_steps,
num_samples,
shape,
cond,
verbose=False,
eta=eta,
unconditional_guidance_scale=scale,
unconditional_conditioning=un_cond)
if config.save_memory:
self.model.low_vram_shift(is_diffusing=False)
x_samples = self.model.decode_first_stage(samples)
x_samples = (
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
results = [x_samples[i] for i in range(num_samples)]
return [255 - detected_map] + results
@torch.inference_mode()
def process_fake_scribble(self, input_image, prompt, a_prompt, n_prompt,
num_samples, image_resolution, detect_resolution,
ddim_steps, scale, seed, eta):
self.load_weight('scribble')
input_image = HWC3(input_image)
detected_map = apply_hed(resize_image(input_image, detect_resolution))
detected_map = HWC3(detected_map)
img = resize_image(input_image, image_resolution)
H, W, C = img.shape
detected_map = cv2.resize(detected_map, (W, H),
interpolation=cv2.INTER_LINEAR)
detected_map = nms(detected_map, 127, 3.0)
detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0)
detected_map[detected_map > 4] = 255
detected_map[detected_map < 255] = 0
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
control = torch.stack([control for _ in range(num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
if seed == -1:
seed = random.randint(0, 65535)
seed_everything(seed)
if config.save_memory:
self.model.low_vram_shift(is_diffusing=False)
cond = {
'c_concat': [control],
'c_crossattn': [
self.model.get_learned_conditioning(
[prompt + ', ' + a_prompt] * num_samples)
]
}
un_cond = {
'c_concat': [control],
'c_crossattn':
[self.model.get_learned_conditioning([n_prompt] * num_samples)]
}
shape = (4, H // 8, W // 8)
if config.save_memory:
self.model.low_vram_shift(is_diffusing=True)
samples, intermediates = self.ddim_sampler.sample(
ddim_steps,
num_samples,
shape,
cond,
verbose=False,
eta=eta,
unconditional_guidance_scale=scale,
unconditional_conditioning=un_cond)
if config.save_memory:
self.model.low_vram_shift(is_diffusing=False)
x_samples = self.model.decode_first_stage(samples)
x_samples = (
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
results = [x_samples[i] for i in range(num_samples)]
return [255 - detected_map] + results
@torch.inference_mode()
def process_pose(self, input_image, prompt, a_prompt, n_prompt,
num_samples, image_resolution, detect_resolution,
ddim_steps, scale, seed, eta):
self.load_weight('pose')
input_image = HWC3(input_image)
detected_map, _ = apply_openpose(
resize_image(input_image, detect_resolution))
detected_map = HWC3(detected_map)
img = resize_image(input_image, image_resolution)
H, W, C = img.shape
detected_map = cv2.resize(detected_map, (W, H),
interpolation=cv2.INTER_NEAREST)
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
control = torch.stack([control for _ in range(num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
if seed == -1:
seed = random.randint(0, 65535)
seed_everything(seed)
if config.save_memory:
self.model.low_vram_shift(is_diffusing=False)
cond = {
'c_concat': [control],
'c_crossattn': [
self.model.get_learned_conditioning(
[prompt + ', ' + a_prompt] * num_samples)
]
}
un_cond = {
'c_concat': [control],
'c_crossattn':
[self.model.get_learned_conditioning([n_prompt] * num_samples)]
}
shape = (4, H // 8, W // 8)
if config.save_memory:
self.model.low_vram_shift(is_diffusing=True)
samples, intermediates = self.ddim_sampler.sample(
ddim_steps,
num_samples,
shape,
cond,
verbose=False,
eta=eta,
unconditional_guidance_scale=scale,
unconditional_conditioning=un_cond)
if config.save_memory:
self.model.low_vram_shift(is_diffusing=False)
x_samples = self.model.decode_first_stage(samples)
x_samples = (
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
results = [x_samples[i] for i in range(num_samples)]
return [detected_map] + results
@torch.inference_mode()
def process_seg(self, input_image, prompt, a_prompt, n_prompt, num_samples,
image_resolution, detect_resolution, ddim_steps, scale,
seed, eta):
self.load_weight('seg')
input_image = HWC3(input_image)
detected_map = apply_uniformer(
resize_image(input_image, detect_resolution))
img = resize_image(input_image, image_resolution)
H, W, C = img.shape
detected_map = cv2.resize(detected_map, (W, H),
interpolation=cv2.INTER_NEAREST)
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
control = torch.stack([control for _ in range(num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
if seed == -1:
seed = random.randint(0, 65535)
seed_everything(seed)
if config.save_memory:
self.model.low_vram_shift(is_diffusing=False)
cond = {
'c_concat': [control],
'c_crossattn': [
self.model.get_learned_conditioning(
[prompt + ', ' + a_prompt] * num_samples)
]
}
un_cond = {
'c_concat': [control],
'c_crossattn':
[self.model.get_learned_conditioning([n_prompt] * num_samples)]
}
shape = (4, H // 8, W // 8)
if config.save_memory:
self.model.low_vram_shift(is_diffusing=True)
samples, intermediates = self.ddim_sampler.sample(
ddim_steps,
num_samples,
shape,
cond,
verbose=False,
eta=eta,
unconditional_guidance_scale=scale,
unconditional_conditioning=un_cond)
if config.save_memory:
self.model.low_vram_shift(is_diffusing=False)
x_samples = self.model.decode_first_stage(samples)
x_samples = (
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
results = [x_samples[i] for i in range(num_samples)]
return [detected_map] + results
@torch.inference_mode()
def process_depth(self, input_image, prompt, a_prompt, n_prompt,
num_samples, image_resolution, detect_resolution,
ddim_steps, scale, seed, eta):
self.load_weight('depth')
input_image = HWC3(input_image)
detected_map, _ = apply_midas(
resize_image(input_image, detect_resolution))
detected_map = HWC3(detected_map)
img = resize_image(input_image, image_resolution)
H, W, C = img.shape
detected_map = cv2.resize(detected_map, (W, H),
interpolation=cv2.INTER_LINEAR)
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
control = torch.stack([control for _ in range(num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
if seed == -1:
seed = random.randint(0, 65535)
seed_everything(seed)
if config.save_memory:
self.model.low_vram_shift(is_diffusing=False)
cond = {
'c_concat': [control],
'c_crossattn': [
self.model.get_learned_conditioning(
[prompt + ', ' + a_prompt] * num_samples)
]
}
un_cond = {
'c_concat': [control],
'c_crossattn':
[self.model.get_learned_conditioning([n_prompt] * num_samples)]
}
shape = (4, H // 8, W // 8)
if config.save_memory:
self.model.low_vram_shift(is_diffusing=True)
samples, intermediates = self.ddim_sampler.sample(
ddim_steps,
num_samples,
shape,
cond,
verbose=False,
eta=eta,
unconditional_guidance_scale=scale,
unconditional_conditioning=un_cond)
if config.save_memory:
self.model.low_vram_shift(is_diffusing=False)
x_samples = self.model.decode_first_stage(samples)
x_samples = (
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
results = [x_samples[i] for i in range(num_samples)]
return [detected_map] + results
@torch.inference_mode()
def process_normal(self, input_image, prompt, a_prompt, n_prompt,
num_samples, image_resolution, detect_resolution,
ddim_steps, scale, seed, eta, bg_threshold):
self.load_weight('normal')
input_image = HWC3(input_image)
_, detected_map = apply_midas(resize_image(input_image,
detect_resolution),
bg_th=bg_threshold)
detected_map = HWC3(detected_map)
img = resize_image(input_image, image_resolution)
H, W, C = img.shape
detected_map = cv2.resize(detected_map, (W, H),
interpolation=cv2.INTER_LINEAR)
control = torch.from_numpy(
detected_map[:, :, ::-1].copy()).float().cuda() / 255.0
control = torch.stack([control for _ in range(num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
if seed == -1:
seed = random.randint(0, 65535)
seed_everything(seed)
if config.save_memory:
self.model.low_vram_shift(is_diffusing=False)
cond = {
'c_concat': [control],
'c_crossattn': [
self.model.get_learned_conditioning(
[prompt + ', ' + a_prompt] * num_samples)
]
}
un_cond = {
'c_concat': [control],
'c_crossattn':
[self.model.get_learned_conditioning([n_prompt] * num_samples)]
}
shape = (4, H // 8, W // 8)
if config.save_memory:
self.model.low_vram_shift(is_diffusing=True)
samples, intermediates = self.ddim_sampler.sample(
ddim_steps,
num_samples,
shape,
cond,
verbose=False,
eta=eta,
unconditional_guidance_scale=scale,
unconditional_conditioning=un_cond)
if config.save_memory:
self.model.low_vram_shift(is_diffusing=False)
x_samples = self.model.decode_first_stage(samples)
x_samples = (
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
results = [x_samples[i] for i in range(num_samples)]
return [detected_map] + results