Spaces:
Paused
Paused
import gradio as gr | |
import os | |
from diffusers import DiffusionPipeline, FluxControlPipeline, FluxTransformer2DModel | |
import torch | |
from transformers import T5EncoderModel | |
from controlnet_aux import CannyDetector | |
from diffusers.utils import load_image | |
from huggingface_hub import login | |
hf_token = os.environ.get("HF_TOKEN") | |
login(token=hf_token) | |
def load_pipeline(four_bit=False): | |
orig_pipeline = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16) | |
if four_bit: | |
print("Using four bit.") | |
transformer = FluxTransformer2DModel.from_pretrained( | |
"sayakpaul/FLUX.1-Canny-dev-nf4", subfolder="transformer", torch_dtype=torch.bfloat16 | |
) | |
text_encoder_2 = T5EncoderModel.from_pretrained( | |
"sayakpaul/FLUX.1-Canny-dev-nf4", subfolder="text_encoder_2", torch_dtype=torch.bfloat16 | |
) | |
pipeline = FluxControlPipeline.from_pipe( | |
orig_pipeline, transformer=transformer, text_encoder_2=text_encoder_2, torch_dtype=torch.bfloat16 | |
) | |
else: | |
transformer = FluxTransformer2DModel.from_pretrained( | |
"black-forest-labs/FLUX.1-Canny-dev", | |
subfolder="transformer", | |
revision="refs/pr/1", | |
torch_dtype=torch.bfloat16, | |
) | |
pipeline = FluxControlPipeline.from_pipe(orig_pipeline, transformer=transformer, torch_dtype=torch.bfloat16) | |
pipeline.enable_model_cpu_offload() | |
return pipeline | |
def get_canny(control_image): | |
processor = CannyDetector() | |
control_image = processor( | |
control_image, low_threshold=50, high_threshold=200, detect_resolution=1024, image_resolution=1024 | |
) | |
return control_image | |
def main(ref_filepath, prompt, use_nf4, progress=gr.Progress(track_tqdm=True)): | |
pipe = load_pipeline(use_nf4) | |
control_image = load_image(ref_filepath) | |
control_image = get_canny(control_image) | |
image = pipe( | |
prompt=prompt, | |
control_image=control_image, | |
height=1024, | |
width=1024, | |
num_inference_steps=50, | |
guidance_scale=30.0, | |
max_sequence_length=512, | |
generator=torch.Generator("cpu").manual_seed(0), | |
).images[0] | |
filename = "output_" | |
filename += "_4bit" if use_nf4 else "" | |
image.save(f"{filename}.png") | |
return f"{filename}.png", control_image | |
with gr.Blocks() as demo: | |
with gr.Column(): | |
gr.Markdown("# FLUX.1 Canny Dev") | |
with gr.Row(): | |
with gr.Column(): | |
image_input = gr.Image(label="Reference Image", type="filepath") | |
prompt = gr.Textbox(label="Prompt") | |
use_nf4 = gr.Checkbox(label="Use NF4 checkpoints", value=True) | |
submit_btn = gr.Button("Submit") | |
with gr.Column(): | |
results= gr.Gallery(label="Results") | |
submit_btn.click( | |
fn = main, | |
inputs = [image_input, prompt, use_nf4], | |
outputs = [results] | |
) | |
demo.launch(show_api=False, show_error=True) |