Spaces:
Paused
Paused
File size: 14,075 Bytes
e79d24a 9a01637 e79d24a e5695f6 1d0d14a 9a01637 3d3780a eef7e90 82c8bea e79d24a 82c8bea 6e58b1f e79d24a 6e58b1f a34bddb 6e58b1f 9a01637 cc5c615 6e58b1f 7d41b2e 08d7f6f 6e58b1f 08d7f6f a34bddb 6e58b1f 9a01637 e79d24a 9a01637 e79d24a eef7e90 e79d24a 82c8bea e79d24a eef7e90 e79d24a eef7e90 82c8bea 6e58b1f 82c8bea 6e58b1f 82c8bea 9a01637 6e58b1f 9a01637 82c8bea e79d24a 4157194 e79d24a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
import os
import cv2
import torch
import gradio as gr
import torchvision
import warnings
import numpy as np
from PIL import Image, ImageSequence
from moviepy.editor import VideoFileClip
import imageio
from diffusers import (
TextToVideoSDPipeline,
AutoencoderKL,
DDPMScheduler,
DDIMScheduler,
UNet3DConditionModel,
)
from transformers import CLIPTokenizer, CLIPTextModel
from diffusers.utils import export_to_video
from typing import List
from text2vid_modded import TextToVideoSDPipelineModded
from invert_utils import ddim_inversion as dd_inversion
from gifs_filter import filter
import subprocess
import spaces
def load_frames(image: Image, mode='RGBA'):
return np.array([np.array(frame.convert(mode)) for frame in ImageSequence.Iterator(image)])
def run_setup():
try:
# Step 1: Install Git LFS
subprocess.run(["git", "lfs", "install"], check=True)
# Step 2: Clone the repository
repo_url = "https://huggingface.co/Hmrishav/t2v_sketch-lora"
subprocess.run(["git", "clone", repo_url], check=True)
# Step 3: Move the checkpoint file
source = "t2v_sketch-lora/checkpoint-2500"
destination = "./checkpoint-2500/"
os.rename(source, destination)
print("Setup completed successfully!")
except subprocess.CalledProcessError as e:
print(f"Error during setup: {e}")
except FileNotFoundError as e:
print(f"File operation error: {e}")
except Exception as e:
print(f"Unexpected error: {e}")
# Automatically run setup during app initialization
run_setup()
def save_gif(frames, path):
imageio.mimsave(
path,
[frame.astype(np.uint8) for frame in frames],
format="GIF",
duration=1 / 10,
loop=0 # 0 means infinite loop
)
def load_image(imgname, target_size=None):
pil_img = Image.open(imgname).convert('RGB')
if target_size:
if isinstance(target_size, int):
target_size = (target_size, target_size)
pil_img = pil_img.resize(target_size, Image.Resampling.LANCZOS)
return torchvision.transforms.ToTensor()(pil_img).unsqueeze(0)
def prepare_latents(pipe, x_aug):
with torch.cuda.amp.autocast():
batch_size, num_frames, channels, height, width = x_aug.shape
x_aug = x_aug.reshape(batch_size * num_frames, channels, height, width)
latents = pipe.vae.encode(x_aug).latent_dist.sample()
latents = latents.view(batch_size, num_frames, -1, latents.shape[2], latents.shape[3])
latents = latents.permute(0, 2, 1, 3, 4)
return pipe.vae.config.scaling_factor * latents
@torch.no_grad()
def invert(pipe, inv, load_name, device="cuda", dtype=torch.bfloat16):
input_img = [load_image(load_name, 256).to(device, dtype=dtype).unsqueeze(1)] * 5
input_img = torch.cat(input_img, dim=1)
latents = prepare_latents(pipe, input_img).to(torch.bfloat16)
inv.set_timesteps(25)
id_latents = dd_inversion(pipe, inv, video_latent=latents, num_inv_steps=25, prompt="")[-1].to(dtype)
return torch.mean(id_latents, dim=2, keepdim=True)
def load_primary_models(pretrained_model_path):
return (
DDPMScheduler.from_config(pretrained_model_path, subfolder="scheduler"),
CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer"),
CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder"),
AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae"),
UNet3DConditionModel.from_pretrained(pretrained_model_path, subfolder="unet"),
)
def initialize_pipeline(model: str, device: str = "cuda"):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
scheduler, tokenizer, text_encoder, vae, unet = load_primary_models(model)
pipe = TextToVideoSDPipeline.from_pretrained(
pretrained_model_name_or_path="damo-vilab/text-to-video-ms-1.7b",
scheduler=scheduler,
tokenizer=tokenizer,
text_encoder=text_encoder.to(device=device, dtype=torch.bfloat16),
vae=vae.to(device=device, dtype=torch.bfloat16),
unet=unet.to(device=device, dtype=torch.bfloat16),
)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
return pipe, pipe.scheduler
# Initialize the models
LORA_CHECKPOINT = "checkpoint-2500"
os.environ["TORCH_CUDNN_V8_API_ENABLED"] = "1"
device = 'cuda' if torch.cuda.is_available() else 'cpu'
dtype = torch.bfloat16
pipe_inversion, inv = initialize_pipeline(LORA_CHECKPOINT, device)
pipe = TextToVideoSDPipelineModded.from_pretrained(
pretrained_model_name_or_path="damo-vilab/text-to-video-ms-1.7b",
scheduler=pipe_inversion.scheduler,
tokenizer=pipe_inversion.tokenizer,
text_encoder=pipe_inversion.text_encoder,
vae=pipe_inversion.vae,
unet=pipe_inversion.unet,
).to(device)
@spaces.GPU(duration=100)
@torch.no_grad()
def process_video(num_frames, num_seeds, generator, exp_dir, load_name, caption, lambda_):
pipe_inversion.to(device)
id_latents = invert(pipe_inversion, inv, load_name).to(device, dtype=dtype)
latents = id_latents.repeat(num_seeds, 1, 1, 1, 1)
generator = [torch.Generator(device="cuda").manual_seed(i) for i in range(num_seeds)]
video_frames = pipe(
prompt=caption,
negative_prompt="",
num_frames=num_frames,
num_inference_steps=25,
inv_latents=latents,
guidance_scale=9,
generator=generator,
lambda_=lambda_,
).frames
gifs = []
for seed in range(num_seeds):
vid_name = f"{exp_dir}/mp4_logs/vid_{os.path.basename(load_name)[:-4]}-rand{seed}.mp4"
gif_name = f"{exp_dir}/gif_logs/vid_{os.path.basename(load_name)[:-4]}-rand{seed}.gif"
os.makedirs(os.path.dirname(vid_name), exist_ok=True)
os.makedirs(os.path.dirname(gif_name), exist_ok=True)
video_path = export_to_video(video_frames[seed], output_video_path=vid_name)
VideoFileClip(vid_name).write_gif(gif_name)
with Image.open(gif_name) as im:
frames = load_frames(im)
frames_collect = np.empty((0, 1024, 1024), int)
for frame in frames:
frame = cv2.resize(frame, (1024, 1024))[:, :, :3]
frame = cv2.cvtColor(255 - frame, cv2.COLOR_RGB2GRAY)
_, frame = cv2.threshold(255 - frame, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
frames_collect = np.append(frames_collect, [frame], axis=0)
save_gif(frames_collect, gif_name)
gifs.append(gif_name)
return gifs
def generate_output(image, prompt: str, num_seeds: int = 3, lambda_value: float = 0.5, progress=gr.Progress(track_tqdm=True)) -> List[str]:
"""Main function to generate output GIFs"""
exp_dir = "static/app_tmp"
os.makedirs(exp_dir, exist_ok=True)
# Save the input image temporarily
temp_image_path = os.path.join(exp_dir, "temp_input.png")
image.save(temp_image_path)
# Generate the GIFs
generated_gifs = process_video(
num_frames=10,
num_seeds=num_seeds,
generator=None,
exp_dir=exp_dir,
load_name=temp_image_path,
caption=prompt,
lambda_=1 - lambda_value
)
# Apply filtering (assuming filter function is imported)
filtered_gifs = filter(generated_gifs, temp_image_path)
return filtered_gifs
def generate_output_from_sketchpad(image, prompt: str, num_seeds: int = 3, lambda_value: float = 0.5, progress=gr.Progress(track_tqdm=True)):
image = image['composite']
results = generate_output(image, prompt, num_seeds, lambda_value)
return results
css=""" """
with gr.Blocks(css=css) as demo:
with gr.Column():
gr.Markdown(
"""
<div align="center" id = "user-content-toc">
<img align="left" width="70" height="70" src="https://github.com/user-attachments/assets/c61cec76-3c4b-42eb-8c65-f07e0166b7d8" alt="">
# [FlipSketch: Flipping assets Drawings to Text-Guided Sketch Animations](https://hmrishavbandy.github.io/flipsketch-web/)
## [Hmrishav Bandyopadhyay](https://hmrishavbandy.github.io/) . [Yi-Zhe Song](https://personalpages.surrey.ac.uk/y.song/)
</div>
"""
)
with gr.Tab("Main"):
with gr.Row():
with gr.Column():
input_sketch = gr.Image(
type="pil",
label="Selected Sketch",
scale=1,
interactive=True,
height=300 # Fixed height for consistency
)
motion_prompt = gr.Textbox(
label="Prompt",
placeholder="Describe the motion...",
lines=3
)
num_seeds = gr.Slider(
minimum=1,
maximum=10,
value=5,
step=1,
label="Seeds"
)
lambda_ = gr.Slider(
minimum=0,
maximum=1,
value=0.5,
step=0.1,
label="Motion Strength"
)
with gr.Column():
gr.Examples(
examples=[
['./static/examples/sketch1.png', 'The camel walks slowly'],
['./static/examples/sketch2.png', 'The wine in the wine glass sways from side to side'],
['./static/examples/sketch3.png', 'The squirrel is eating a nut'],
['./static/examples/sketch4.png', 'The surfer surfs on the waves'],
['./static/examples/sketch5.png', 'A galloping horse'],
['./static/examples/sketch6.png', 'The cat walks forward'],
['./static/examples/sketch7.png', 'The eagle flies in the sky'],
['./static/examples/sketch8.png', 'The flower is blooming slowly'],
['./static/examples/sketch9.png', 'The reindeer looks around'],
['./static/examples/sketch10.png', 'The cloud floats in the sky'],
['./static/examples/sketch11.png', 'The jazz saxophonist performs on stage with a rhythmic sway, his upper body sways subtly to the rhythm of the music.'],
['./static/examples/sketch12.png', 'The biker rides on the road']
],
inputs=[input_sketch, motion_prompt],
examples_per_page=4,
)
with gr.Tab("Draw"):
with gr.Row():
with gr.Column():
draw_sketchpad = gr.Sketchpad(
value={
"background": "./static/examples/background.jpeg",
"layers": None,
"composite": None
},
type="pil",
image_mode="RGB",
layers=False,
)
with gr.Column():
draw_motion_prompt = gr.Textbox(
label="Prompt",
placeholder="Describe the motion...",
lines=3
)
draw_num_seeds = gr.Slider(
minimum=1,
maximum=10,
value=5,
step=1,
label="Seeds"
)
draw_lambda_ = gr.Slider(
minimum=0,
maximum=1,
value=0.5,
step=0.1,
label="Motion Strength"
)
sketchpad_generate_btn = gr.Button(
"Generate Animation",
variant="primary",
elem_classes="generate-btn",
interactive=True,
)
output_gallery = gr.Gallery(
label="Results",
elem_classes="output-gallery",
columns=3,
rows=2,
height="auto",
allow_preview=False, # Disable preview expansion
show_share_button=False,
object_fit="cover",
preview=False
)
# Event handlers
generate_btn.click(
fn=generate_output,
inputs=[
input_sketch,
motion_prompt,
num_seeds,
lambda_
],
outputs=output_gallery
)
def reload_pad():
blank_pad ={
"background": "./static/examples/background.jpeg",
"layers": None,
"composite": None
}
return blank_pad
draw_sketchpad.delete(
fn=reload_pad,
inputs = None,
outputs = [draw_sketchpad],
queue=False
)
sketchpad_generate_btn.click(
fn=generate_output_from_sketchpad,
inputs=[
draw_sketchpad,
draw_motion_prompt,
draw_num_seeds,
draw_lambda_
],
outputs=output_gallery
)
# Launch the app
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_api=False,
ssr_mode=False
) |