FlipSketch / text2vid_torch2.py
fffiloni's picture
Update text2vid_torch2.py
f89e4d2 verified
raw
history blame
29.4 kB
from typing import Any, Callable, Dict, List, Optional, Union
import numpy as np
import torch
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers.image_processor import VaeImageProcessor
from diffusers.models import AutoencoderKL, UNet3DConditionModel
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (deprecate,
logging,
replace_example_docstring)
from diffusers.pipelines.text_to_video_synthesis import TextToVideoSDPipelineOutput
from torch.nn import functional as F
from diffusers.models.attention_processor import Attention
import math
TAU_2 = 15
TAU_1 = 10
def init_attention_params(unet, num_frames, lambda_=None, bs=None):
for name, module in unet.named_modules():
module_name = type(module).__name__
if module_name == "Attention":
module.processor.LAMBDA = lambda_
module.processor.bs = bs
module.processor.num_frames = num_frames
def scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0,
is_causal=False, scale=None, enable_gqa=False, k1 = None, d_l = None) -> torch.Tensor:
L, S = query.size(-2), key.size(-2)
scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale
attn_bias = torch.zeros(L, S, dtype=query.dtype).to(query.device)
if is_causal:
assert attn_mask is None
temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0)
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
attn_bias.to(query.dtype)
if attn_mask is not None:
if attn_mask.dtype == torch.bool:
attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf"))
else:
attn_bias += attn_mask
if enable_gqa:
if k1 is not None and d_l is not None:
k1 = k1.repeat_interleave(query.size(-3)//k1.size(-3), -3)
key = key.repeat_interleave(query.size(-3)//key.size(-3), -3)
value = value.repeat_interleave(query.size(-3)//value.size(-3), -3)
if k1 is not None:
attn_k1 = query @ k1.transpose(-2, -1)
attn_weight = query @ key.transpose(-2, -1)
attn_weight[:,:len(d_l),0] = attn_k1[:,:len(d_l),0] * d_l
attn_weight = attn_weight * scale_factor
else:
attn_weight = query @ key.transpose(-2, -1) * scale_factor
attn_weight += attn_bias
attn_weight = torch.softmax(attn_weight, dim=-1)
attn_weight = torch.dropout(attn_weight, dropout_p, train=True)
return attn_weight @ value
class AttnProcessor2_0:
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
"""
def __init__(self):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
def __call__(
self,
attn: Attention,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
temb: Optional[torch.Tensor] = None,
*args,
**kwargs,
) -> torch.Tensor:
if len(args) > 0 or kwargs.get("scale", None) is not None:
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
deprecate("scale", "1.0.0", deprecation_message)
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query, key, d_l, k1 = self.get_qk(query, key)
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
if d_l is not None:
k1 = k1.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
hidden_states = scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False, k1 = k1, d_l = d_l
)
else:
hidden_states = scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
def get_qk(
self, query, key):
r"""
Compute the attention scores.
Args:
query (`torch.Tensor`): The query tensor.
key (`torch.Tensor`): The key tensor.
attention_mask (`torch.Tensor`, *optional*): The attention mask to use. If `None`, no mask is applied.
Returns:
`torch.Tensor`: The attention probabilities/scores.
"""
q_old = query.clone()
k_old = key.clone()
dynamic_lambda = None
key1 = None
if self.use_last_attn_slice:# and self.last_attn_slice[0].shape[0] == query.shape[0]:# and query.shape[1]==self.num_frames:
if self.last_attn_slice is not None:
query_list = self.last_attn_slice[0]
key_list = self.last_attn_slice[1]
if query.shape[1] == self.num_frames and query.shape == key.shape:
key1 = key.clone()
key1[:,:1,:key_list.shape[2]] = key_list[:,:1]
dynamic_lambda = torch.tensor([1 + self.LAMBDA * (i/50) for i in range(self.num_frames)]).to(key.dtype).cuda()
if q_old.shape == k_old.shape and q_old.shape[1]!=self.num_frames:
batch_dim = query_list.shape[0] // self.bs
all_dim = query.shape[0] // self.bs
for i in range(self.bs):
query[i*all_dim:(i*all_dim) + batch_dim,:query_list.shape[1],:query_list.shape[2]] = query_list[i*batch_dim:(i+1)*batch_dim]
if self.save_last_attn_slice:
self.last_attn_slice = [
query,
key,
]
self.save_last_attn_slice = False
return query, key, dynamic_lambda, key1
def init_attention_func(unet):
for name, module in unet.named_modules():
module_name = type(module).__name__
if module_name == "Attention":
module.set_processor(AttnProcessor2_0())
module.processor.last_attn_slice = None
module.processor.use_last_attn_slice = False
module.processor.save_last_attn_slice = False
module.processor.LAMBDA = 0
module.processor.num_frames = None
module.processor.bs = 0
return unet
def use_last_self_attention(unet, use=True):
for name, module in unet.named_modules():
module_name = type(module).__name__
if module_name == "Attention" and "attn1" in name:
module.processor.use_last_attn_slice = use
def save_last_self_attention(unet, save=True):
for name, module in unet.named_modules():
module_name = type(module).__name__
if module_name == "Attention" and "attn1" in name:
module.processor.save_last_attn_slice = save
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers import TextToVideoSDPipeline
>>> from diffusers.utils import export_to_video
>>> pipe = TextToVideoSDPipeline.from_pretrained(
... "damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16"
... )
>>> pipe.enable_model_cpu_offload()
>>> prompt = "Spiderman is surfing"
>>> video_frames = pipe(prompt).frames[0]
>>> video_path = export_to_video(video_frames)
>>> video_path
```
"""
# Copied from diffusers.pipelines.animatediff.pipeline_animatediff.tensor2vid
def tensor2vid(video: torch.Tensor, processor: "VaeImageProcessor", output_type: str = "np"):
batch_size, channels, num_frames, height, width = video.shape
outputs = []
for batch_idx in range(batch_size):
batch_vid = video[batch_idx].permute(1, 0, 2, 3)
batch_output = processor.postprocess(batch_vid, output_type)
outputs.append(batch_output)
if output_type == "np":
outputs = np.stack(outputs)
elif output_type == "pt":
outputs = torch.stack(outputs)
elif not output_type == "pil":
raise ValueError(f"{output_type} does not exist. Please choose one of ['np', 'pt', 'pil']")
return outputs
from diffusers import TextToVideoSDPipeline
class TextToVideoSDPipelineModded(TextToVideoSDPipeline):
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet3DConditionModel,
scheduler: KarrasDiffusionSchedulers,
):
super().__init__(vae, text_encoder, tokenizer, unet, scheduler)
def call_network(self,
negative_prompt_embeds,
prompt_embeds,
latents,
inv_latents,
t,
i,
null_embeds,
cross_attention_kwargs,
extra_step_kwargs,
do_classifier_free_guidance,
guidance_scale,
):
inv_latent_model_input = inv_latents
inv_latent_model_input = self.scheduler.scale_model_input(inv_latent_model_input, t)
latent_model_input = latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
if do_classifier_free_guidance:
noise_pred_uncond = self.unet(
latent_model_input,
t,
encoder_hidden_states=negative_prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
noise_null_pred_uncond = self.unet(
inv_latent_model_input,
t,
encoder_hidden_states=negative_prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
if i<=TAU_2:
save_last_self_attention(self.unet)
noise_null_pred = self.unet(
inv_latent_model_input,
t,
encoder_hidden_states=null_embeds,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
if do_classifier_free_guidance:
noise_null_pred = noise_null_pred_uncond + guidance_scale * (noise_null_pred - noise_null_pred_uncond)
bsz, channel, frames, width, height = inv_latents.shape
inv_latents = inv_latents.permute(0, 2, 1, 3, 4).reshape(bsz*frames, channel, height, width)
noise_null_pred = noise_null_pred.permute(0, 2, 1, 3, 4).reshape(bsz*frames, channel, height, width)
inv_latents = self.scheduler.step(noise_null_pred, t, inv_latents, **extra_step_kwargs).prev_sample
inv_latents = inv_latents[None, :].reshape((bsz, frames , -1) + inv_latents.shape[2:]).permute(0, 2, 1, 3, 4)
use_last_self_attention(self.unet)
else:
noise_null_pred = None
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds, # For unconditional guidance
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
use_last_self_attention(self.unet, False)
if do_classifier_free_guidance:
noise_pred_text = noise_pred
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# reshape latents
bsz, channel, frames, width, height = latents.shape
latents = latents.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, width, height)
noise_pred = noise_pred.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, width, height)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
# reshape latents back
latents = latents[None, :].reshape(bsz, frames, channel, width, height).permute(0, 2, 1, 3, 4)
return {
"latents": latents,
"inv_latents": inv_latents,
"noise_pred": noise_pred,
"noise_null_pred": noise_null_pred,
}
def optimize_latents(self, latents, inv_latents, t, i, null_embeds, cross_attention_kwargs, prompt_embeds):
inv_scaled = self.scheduler.scale_model_input(inv_latents, t)
noise_null_pred = self.unet(
inv_scaled[:,:,0:1,:,:],
t,
encoder_hidden_states=null_embeds,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
with torch.enable_grad():
latent_train = latents[:,:,1:,:,:].clone().detach().requires_grad_(True)
optimizer = torch.optim.Adam([latent_train], lr=1e-3)
for j in range(10):
latent_in = torch.cat([inv_latents[:,:,0:1,:,:].detach(), latent_train], dim=2)
latent_input_unet = self.scheduler.scale_model_input(latent_in, t)
noise_pred = self.unet(
latent_input_unet,
t,
encoder_hidden_states=prompt_embeds, # For unconditional guidance
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
loss = torch.nn.functional.mse_loss(noise_pred[:,:,0,:,:], noise_null_pred[:,:,0,:,:])
loss.backward()
optimizer.step()
optimizer.zero_grad()
print("Iteration {} Subiteration {} Loss {} ".format(i, j, loss.item()))
latents = latent_in.detach()
return latents
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_frames: int = 16,
num_inference_steps: int = 50,
guidance_scale: float = 9.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
inv_latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "np",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
clip_skip: Optional[int] = None,
lambda_ = 0.5,
):
r"""
The call function to the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The height in pixels of the generated video.
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The width in pixels of the generated video.
num_frames (`int`, *optional*, defaults to 16):
The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds
amounts to 2 seconds of video.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality videos at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
A higher guidance scale value encourages the model to generate images closely linked to the text
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random `generator`. Latents should be of shape
`(batch_size, num_channel, num_frames, height, width)`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
output_type (`str`, *optional*, defaults to `"np"`):
The output format of the generated video. Choose between `torch.FloatTensor` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] instead
of a plain tuple.
callback (`Callable`, *optional*):
A function that calls every `callback_steps` steps during inference. The function is called with the
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function is called. If not specified, the callback is called at
every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
clip_skip (`int`, *optional*):
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
the output of the pre-final layer will be used for computing the prompt embeddings.
Examples:
Returns:
[`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] is
returned, otherwise a `tuple` is returned where the first element is a list with the generated frames.
"""
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
num_images_per_prompt = 1
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
)
# # 2. Define call parameters
# if prompt is not None and isinstance(prompt, str):
# batch_size = 1
# elif prompt is not None and isinstance(prompt, list):
# batch_size = len(prompt)
# else:
# batch_size = prompt_embeds.shape[0]
batch_size = inv_latents.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
text_encoder_lora_scale = (
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
)
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
[prompt] * batch_size,
device,
num_images_per_prompt,
do_classifier_free_guidance,
[negative_prompt] * batch_size if negative_prompt is not None else None,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
lora_scale=text_encoder_lora_scale,
clip_skip=clip_skip,
)
null_embeds, negative_prompt_embeds = self.encode_prompt(
[""] * batch_size,
device,
num_images_per_prompt,
do_classifier_free_guidance,
[negative_prompt] * batch_size if negative_prompt is not None else None,
prompt_embeds=None,
negative_prompt_embeds=negative_prompt_embeds,
lora_scale=text_encoder_lora_scale,
clip_skip=clip_skip,
)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
num_frames,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
inv_latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
num_frames,
height,
width,
prompt_embeds.dtype,
device,
generator,
inv_latents,
)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
init_attention_func(self.unet)
print("Setup for Current Run")
print("----------------------")
print("Prompt ", prompt)
print("Batch size ", batch_size)
print("Num frames ", latents.shape[2])
print("Lambda ", lambda_)
init_attention_params(self.unet, num_frames=latents.shape[2], lambda_=lambda_, bs = batch_size)
iters_to_alter = [-1]#i for i in range(0, TAU_1)]
with self.progress_bar(total=num_inference_steps) as progress_bar:
mask_in = torch.zeros(latents.shape).to(dtype=latents.dtype, device=latents.device)
mask_in[:, :, 0, :, :] = 1
assert latents.shape[0] == inv_latents.shape[0], "Latents and Inverse Latents should have the same batch but got {} and {}".format(latents.shape[0], inv_latents.shape[0])
inv_latents = inv_latents.repeat(1,1,num_frames,1,1)
latents = inv_latents * mask_in + latents * (1-mask_in)
for i, t in enumerate(timesteps):
curr_copy = max(1,num_frames - i)
inv_latents = inv_latents[:,:,:curr_copy, :, : ]
if i in iters_to_alter:
latents = self.optimize_latents(latents, inv_latents, t, i, null_embeds, cross_attention_kwargs, prompt_embeds)
output_dict = self.call_network(
negative_prompt_embeds,
prompt_embeds,
latents,
inv_latents,
t,
i,
null_embeds,
cross_attention_kwargs,
extra_step_kwargs,
do_classifier_free_guidance,
guidance_scale,
)
latents = output_dict["latents"]
inv_latents = output_dict["inv_latents"]
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, t, latents)
# 8. Post processing
if output_type == "latent":
video = latents
else:
video_tensor = self.decode_latents(latents)
video = tensor2vid(video_tensor, self.image_processor, output_type)
# 9. Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (video,)
return TextToVideoSDPipelineOutput(frames=video)