FlipSketch / app_full.py
Hmrishav's picture
resolve deps
b1350bf
from flask import Flask, render_template, request, jsonify
import os
import cv2
import torch
import torchvision
import warnings
import numpy as np
from PIL import Image, ImageSequence
from moviepy.editor import VideoFileClip
import imageio
import uuid
from diffusers import (
TextToVideoSDPipeline,
AutoencoderKL,
DDPMScheduler,
DDIMScheduler,
UNet3DConditionModel,
)
import time
from transformers import CLIPTokenizer, CLIPTextModel
from diffusers.utils import export_to_video
from gifs_filter import filter
from invert_utils import ddim_inversion as dd_inversion
from text2vid_modded_full import TextToVideoSDPipelineModded
# Flask app setup
app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = 'static/uploads'
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024 # 16MB max file size
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
# Environment setup
os.environ["TORCH_CUDNN_V8_API_ENABLED"] = "1"
LORA_CHECKPOINT = "checkpoint-2500"
device = 'cuda' if torch.cuda.is_available() else 'cpu'
dtype = torch.bfloat16
# Helper functions
def cleanup_old_files(directory, age_in_seconds = 600):
"""
Deletes files older than a certain age in the specified directory.
Args:
directory (str): The directory to clean up.
age_in_seconds (int): The age in seconds; files older than this will be deleted.
"""
now = time.time()
for filename in os.listdir(directory):
file_path = os.path.join(directory, filename)
# Only delete files (not directories)
if os.path.isfile(file_path):
file_age = now - os.path.getmtime(file_path)
if file_age > age_in_seconds:
try:
os.remove(file_path)
print(f"Deleted old file: {file_path}")
except Exception as e:
print(f"Error deleting file {file_path}: {e}")
def load_frames(image: Image, mode='RGBA'):
return np.array([np.array(frame.convert(mode)) for frame in ImageSequence.Iterator(image)])
def save_gif(frames, path):
imageio.mimsave(path, [frame.astype(np.uint8) for frame in frames], format='GIF', duration=1/10)
def load_image(imgname, target_size=None):
pil_img = Image.open(imgname).convert('RGB')
if target_size:
if isinstance(target_size, int):
target_size = (target_size, target_size)
pil_img = pil_img.resize(target_size, Image.Resampling.LANCZOS)
return torchvision.transforms.ToTensor()(pil_img).unsqueeze(0) # Add batch dimension
def prepare_latents(pipe, x_aug):
with torch.cuda.amp.autocast():
batch_size, num_frames, channels, height, width = x_aug.shape
x_aug = x_aug.reshape(batch_size * num_frames, channels, height, width)
latents = pipe.vae.encode(x_aug).latent_dist.sample()
latents = latents.view(batch_size, num_frames, -1, latents.shape[2], latents.shape[3])
latents = latents.permute(0, 2, 1, 3, 4)
return pipe.vae.config.scaling_factor * latents
@torch.no_grad()
def invert(pipe, inv, load_name, device="cuda", dtype=torch.bfloat16):
input_img = [load_image(load_name, 256).to(device, dtype=dtype).unsqueeze(1)] * 5
input_img = torch.cat(input_img, dim=1)
latents = prepare_latents(pipe, input_img).to(torch.bfloat16)
inv.set_timesteps(25)
id_latents = dd_inversion(pipe, inv, video_latent=latents, num_inv_steps=25, prompt="")[-1].to(dtype)
return torch.mean(id_latents, dim=2, keepdim=True)
def load_primary_models(pretrained_model_path):
return (
DDPMScheduler.from_config(pretrained_model_path, subfolder="scheduler"),
CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer"),
CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder"),
AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae"),
UNet3DConditionModel.from_pretrained(pretrained_model_path, subfolder="unet"),
)
def initialize_pipeline(model: str, device: str = "cuda"):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
scheduler, tokenizer, text_encoder, vae, unet = load_primary_models(model)
pipe = TextToVideoSDPipeline.from_pretrained(
pretrained_model_name_or_path="damo-vilab/text-to-video-ms-1.7b",
scheduler=scheduler,
tokenizer=tokenizer,
text_encoder=text_encoder.to(device=device, dtype=torch.bfloat16),
vae=vae.to(device=device, dtype=torch.bfloat16),
unet=unet.to(device=device, dtype=torch.bfloat16),
)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
return pipe, pipe.scheduler
pipe_inversion, inv = initialize_pipeline(LORA_CHECKPOINT, device)
pipe = TextToVideoSDPipelineModded.from_pretrained(
pretrained_model_name_or_path="damo-vilab/text-to-video-ms-1.7b",
scheduler=pipe_inversion.scheduler,
tokenizer=pipe_inversion.tokenizer,
text_encoder=pipe_inversion.text_encoder,
vae=pipe_inversion.vae,
unet=pipe_inversion.unet,
).to(device)
@torch.no_grad()
def process(num_frames, num_seeds, generator, exp_dir, load_name, caption, lambda_):
pipe_inversion.to(device)
id_latents = invert(pipe_inversion, inv, load_name).to(device, dtype=dtype)
latents = id_latents.repeat(num_seeds, 1, 1, 1, 1)
generator = [torch.Generator(device="cuda").manual_seed(i) for i in range(num_seeds)]
video_frames = pipe(
prompt=caption,
negative_prompt="",
num_frames=num_frames,
num_inference_steps=25,
inv_latents=latents,
guidance_scale=9,
generator=generator,
lambda_=lambda_,
).frames
try:
load_name = load_name.split("/")[-1]
except:
pass
gifs = []
for seed in range(num_seeds):
vid_name = f"{exp_dir}/mp4_logs/vid_{load_name[:-4]}-rand{seed}.mp4"
gif_name = f"{exp_dir}/gif_logs/vid_{load_name[:-4]}-rand{seed}.gif"
video_path = export_to_video(video_frames[seed], output_video_path=vid_name)
VideoFileClip(vid_name).write_gif(gif_name)
with Image.open(gif_name) as im:
frames = load_frames(im)
frames_collect = np.empty((0, 1024, 1024), int)
for frame in frames:
frame = cv2.resize(frame, (1024, 1024))[:, :, :3]
frame = cv2.cvtColor(255 - frame, cv2.COLOR_RGB2GRAY)
_, frame = cv2.threshold(255 - frame, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
frames_collect = np.append(frames_collect, [frame], axis=0)
save_gif(frames_collect, gif_name)
gifs.append(gif_name)
return gifs
def generate_gifs(filepath, prompt, num_seeds=5, lambda_=0):
exp_dir = "static/app_tmp"
os.makedirs(exp_dir, exist_ok=True)
gifs = process(
num_frames=10,
num_seeds=num_seeds,
generator=None,
exp_dir=exp_dir,
load_name=filepath,
caption=prompt,
lambda_=lambda_
)
return gifs
@app.route('/')
def index():
return render_template('index.html')
@app.route('/generate', methods=['POST'])
def generate():
directories_to_clean = [
app.config['UPLOAD_FOLDER'],
'static/app_tmp/mp4_logs',
'static/app_tmp/gif_logs',
'static/app_tmp/png_logs'
]
# Perform cleanup
os.makedirs('static/app_tmp', exist_ok=True)
for directory in directories_to_clean:
os.makedirs(directory, exist_ok=True) # Ensure the directory exists
cleanup_old_files(directory)
prompt = request.form.get('prompt', '')
num_gifs = int(request.form.get('seeds', 3))
lambda_value = 1 - float(request.form.get('lambda', 0.5))
selected_example = request.form.get('selected_example', None)
file = request.files.get('image')
if not file and not selected_example:
return jsonify({'error': 'No image file provided or example selected'}), 400
if selected_example:
# Use the selected example image
filepath = os.path.join('static', 'examples', selected_example)
unique_id = None # No need for unique ID
else:
# Save the uploaded image
unique_id = str(uuid.uuid4())
filepath = os.path.join(app.config['UPLOAD_FOLDER'], f"{unique_id}_uploaded_image.png")
file.save(filepath)
generated_gifs = generate_gifs(filepath, prompt, num_seeds=num_gifs, lambda_=lambda_value)
unique_id = str(uuid.uuid4())
# Append unique id to each gif path
for i in range(len(generated_gifs)):
os.rename(generated_gifs[i], f"{generated_gifs[i].split('.')[0]}_{unique_id}.gif")
generated_gifs[i] = f"{generated_gifs[i].split('.')[0]}_{unique_id}.gif"
# Move the generated gifs to the static folder
filtered_gifs = filter(generated_gifs, filepath)
return jsonify({'gifs': filtered_gifs, 'prompt': prompt})
if __name__ == '__main__':
app.run(debug=True)