FlipSketch / app_gradio.py
fffiloni's picture
Update app_gradio.py
55659e5 verified
import spaces
import os
import cv2
import torch
import gradio as gr
import torchvision
import warnings
import numpy as np
from PIL import Image, ImageSequence
from moviepy.editor import VideoFileClip
import imageio
from diffusers import (
TextToVideoSDPipeline,
AutoencoderKL,
DDPMScheduler,
DDIMScheduler,
UNet3DConditionModel,
)
from transformers import CLIPTokenizer, CLIPTextModel
from diffusers.utils import export_to_video
from typing import List
from text2vid_torch2 import TextToVideoSDPipelineModded
from invert_utils import ddim_inversion as dd_inversion
from gifs_filter import filter
import subprocess
import uuid
import tempfile
import gc
from huggingface_hub import snapshot_download
def load_frames(image: Image, mode='RGBA'):
return np.array([np.array(frame.convert(mode)) for frame in ImageSequence.Iterator(image)])
os.makedirs("t2v_sketch-lora", exist_ok=True)
snapshot_download(
repo_id="Hmrishav/t2v_sketch-lora",
local_dir="./t2v_sketch-lora"
)
def save_gif(frames, path):
imageio.mimsave(
path,
[frame.astype(np.uint8) for frame in frames],
format="GIF",
duration=1 / 10,
loop=0 # 0 means infinite loop
)
def load_image(imgname, target_size=None):
pil_img = Image.open(imgname).convert('RGB')
if target_size:
if isinstance(target_size, int):
target_size = (target_size, target_size)
pil_img = pil_img.resize(target_size, Image.Resampling.LANCZOS)
return torchvision.transforms.ToTensor()(pil_img).unsqueeze(0)
def prepare_latents(pipe, x_aug):
with torch.cuda.amp.autocast():
batch_size, num_frames, channels, height, width = x_aug.shape
x_aug = x_aug.reshape(batch_size * num_frames, channels, height, width)
latents = pipe.vae.encode(x_aug).latent_dist.sample()
latents = latents.view(batch_size, num_frames, -1, latents.shape[2], latents.shape[3])
latents = latents.permute(0, 2, 1, 3, 4)
return pipe.vae.config.scaling_factor * latents
@torch.no_grad()
def invert(pipe, inv, load_name, device="cuda", dtype=torch.bfloat16):
input_img = [load_image(load_name, 256).to(device, dtype=dtype).unsqueeze(1)] * 5
input_img = torch.cat(input_img, dim=1)
torch.cuda.synchronize() # Ensure image tensor preparation is complete
latents = prepare_latents(pipe, input_img).to(torch.bfloat16)
torch.cuda.synchronize() # Wait for latents to finish encoding
inv.set_timesteps(25)
id_latents = dd_inversion(pipe, inv, video_latent=latents, num_inv_steps=25, prompt="")[-1].to(dtype)
torch.cuda.synchronize() # Ensure DDIM inversion is complete
return torch.mean(id_latents, dim=2, keepdim=True)
def load_primary_models(pretrained_model_path):
return (
DDPMScheduler.from_config(pretrained_model_path, subfolder="scheduler"),
CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer"),
CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder"),
AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae"),
UNet3DConditionModel.from_pretrained(pretrained_model_path, subfolder="unet"),
)
def initialize_pipeline(model: str, device: str = "cuda"):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
scheduler, tokenizer, text_encoder, vae, unet = load_primary_models(model)
pipe = TextToVideoSDPipeline.from_pretrained(
pretrained_model_name_or_path="damo-vilab/text-to-video-ms-1.7b",
scheduler=scheduler,
tokenizer=tokenizer,
text_encoder=text_encoder.to(device=device, dtype=torch.bfloat16),
vae=vae.to(device=device, dtype=torch.bfloat16),
unet=unet.to(device=device, dtype=torch.bfloat16),
)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
return pipe, pipe.scheduler
# Initialize the models
LORA_CHECKPOINT = "t2v_sketch-lora/checkpoint-2500"
os.environ["TORCH_CUDNN_V8_API_ENABLED"] = "1"
device = 'cuda' if torch.cuda.is_available() else 'cpu'
dtype = torch.bfloat16
pipe_inversion, inv = initialize_pipeline(LORA_CHECKPOINT, device)
pipe = TextToVideoSDPipelineModded.from_pretrained(
pretrained_model_name_or_path="damo-vilab/text-to-video-ms-1.7b",
scheduler=pipe_inversion.scheduler,
tokenizer=pipe_inversion.tokenizer,
text_encoder=pipe_inversion.text_encoder,
vae=pipe_inversion.vae,
unet=pipe_inversion.unet,
).to(device)
@torch.no_grad()
def process_video(num_frames, num_seeds, generator, exp_dir, load_name, caption, lambda_):
pipe_inversion.to(device)
try:
id_latents = invert(pipe_inversion, inv, load_name).to(device, dtype=dtype)
except Exception as e:
torch.cuda.empty_cache() # Clear CUDA cache in case of failure
gc.collect()
raise gr.Error(f"Invert latents failed: {str(e)}") from e
latents = id_latents.repeat(num_seeds, 1, 1, 1, 1)
generator = [torch.Generator(device="cuda").manual_seed(i) for i in range(num_seeds)]
try:
video_frames = pipe(
prompt=caption,
negative_prompt="",
num_frames=num_frames,
num_inference_steps=25,
inv_latents=latents,
guidance_scale=9,
generator=generator,
lambda_=lambda_,
).frames
except Exception as e:
torch.cuda.empty_cache()
gc.collect()
raise RuntimeError(f"Failed to process video: {e}") from e
gifs = []
try:
for seed in range(num_seeds):
vid_name = f"{exp_dir}/mp4_logs/vid_{os.path.basename(load_name)[:-4]}-rand{seed}.mp4"
gif_name = f"{exp_dir}/gif_logs/vid_{os.path.basename(load_name)[:-4]}-rand{seed}.gif"
os.makedirs(os.path.dirname(vid_name), exist_ok=True)
os.makedirs(os.path.dirname(gif_name), exist_ok=True)
video_path = export_to_video(video_frames[seed], output_video_path=vid_name)
VideoFileClip(vid_name).write_gif(gif_name)
with Image.open(gif_name) as im:
frames = load_frames(im)
frames_collect = np.empty((0, 1024, 1024), int)
for frame in frames:
frame = cv2.resize(frame, (1024, 1024))[:, :, :3]
frame = cv2.cvtColor(255 - frame, cv2.COLOR_RGB2GRAY)
_, frame = cv2.threshold(255 - frame, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
frames_collect = np.append(frames_collect, [frame], axis=0)
save_gif(frames_collect, gif_name)
gifs.append(gif_name)
except Exception as e:
torch.cuda.empty_cache()
raise RuntimeError(f"Failed during GIF generation: {e}") from e
return gifs
def generate_output(image, apply_filter, prompt: str, num_seeds: int = 3, lambda_value: float = 0.5, progress=gr.Progress(track_tqdm=True)) -> List[str]:
gc.collect()
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
if prompt is None:
raise gr.Error("You forgot to describe the motion !")
"""Main function to generate output GIFs"""
# Create a temporary directory for this session
exp_dir = tempfile.mkdtemp(prefix="app_tmp_")
os.makedirs(exp_dir, exist_ok=True)
# Save the input image temporarily
unique_id = str(uuid.uuid4())
temp_image_path = os.path.join(exp_dir, f"temp_input_{unique_id}.png")
image = Image.open(image)
image = image.resize((256, 256), Image.Resampling.LANCZOS)
image.save(temp_image_path)
# Attempt to process video
generated_gifs = process_video(
num_frames=10,
num_seeds=num_seeds,
generator=None,
exp_dir=exp_dir,
load_name=temp_image_path,
caption=prompt,
lambda_=1 - lambda_value
)
if apply_filter:
try:
print("APPLYING FILTER")
# Attempt to apply filtering
filtered_gifs = filter(generated_gifs, temp_image_path)
torch.cuda.empty_cache() # Clear CUDA cache in case of failure
gc.collect()
return filtered_gifs, filtered_gifs
except Exception as e:
torch.cuda.empty_cache() # Clear CUDA cache in case of failure
gc.collect()
raise gr.Error(f"Filtering failed: {str(e)}") from e
else:
print("NOT APPLYING FILTER")
torch.cuda.empty_cache() # Clear CUDA cache in case of failure
gc.collect()
return generated_gifs, generated_gifs
def generate_output_from_sketchpad(image, apply_filter, prompt: str, num_seeds: int = 3, lambda_value: float = 0.5, progress=gr.Progress(track_tqdm=True)):
image = image['composite']
print(image)
results, results_to_download = generate_output(image, apply_filter, prompt, num_seeds, lambda_value)
return results, results_to_download
css="""
div#col-container{
max-width: 1200px;
margin: 0 auto
}
div#sketchpad-element{
height: auto!important;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(
"""
<div align="center" id = "user-content-toc">
<img align="left" width="70" height="70" src="https://github.com/user-attachments/assets/c61cec76-3c4b-42eb-8c65-f07e0166b7d8" alt="">
# [FlipSketch: Flipping assets Drawings to Text-Guided Sketch Animations](https://hmrishavbandy.github.io/flipsketch-web/)
## [Hmrishav Bandyopadhyay](https://hmrishavbandy.github.io/) . [Yi-Zhe Song](https://personalpages.surrey.ac.uk/y.song/)
</div>
"""
)
with gr.Tab("Upload your sketch"):
with gr.Row():
with gr.Column():
input_sketch = gr.Image(
type="filepath",
label="Selected Sketch",
scale=1,
interactive=True,
height=300 # Fixed height for consistency
)
motion_prompt = gr.Textbox(
label="Prompt",
placeholder="Describe the motion...",
lines=2
)
num_seeds = gr.Slider(
minimum=1,
maximum=10,
value=5,
step=1,
label="Seeds"
)
lambda_ = gr.Slider(
minimum=0,
maximum=1,
value=0.5,
step=0.1,
label="Motion Strength"
)
apply_filter = gr.Checkbox(
label="Apply GIFs Filters",
value=True,
info="If Apply Filters is checked, non accurate results compared to input sketch will be filtered off",
)
with gr.Column():
gr.Examples(
examples=[
['./static/examples/sketch1.png', 'The camel walks slowly'],
['./static/examples/sketch2.png', 'The wine in the wine glass sways from side to side'],
['./static/examples/sketch3.png', 'The squirrel is eating a nut'],
['./static/examples/sketch4.png', 'The surfer surfs on the waves'],
['./static/examples/sketch5.png', 'A galloping horse'],
['./static/examples/sketch6.png', 'The cat walks forward'],
['./static/examples/sketch7.png', 'The eagle flies in the sky'],
['./static/examples/sketch8.png', 'The flower is blooming slowly'],
['./static/examples/sketch9.png', 'The reindeer looks around'],
['./static/examples/sketch10.png', 'The cloud floats in the sky'],
['./static/examples/sketch11.png', 'The jazz saxophonist performs on stage with a rhythmic sway, his upper body sways subtly to the rhythm of the music.'],
['./static/examples/sketch12.png', 'The biker rides on the road']
],
inputs=[input_sketch, motion_prompt],
examples_per_page=4,
)
generate_btn = gr.Button(
"Generate Animation",
variant="primary",
elem_classes="generate-btn",
interactive=True,
)
with gr.Tab("Draw your own"):
with gr.Row():
with gr.Column():
draw_sketchpad = gr.Sketchpad(
label="Draw your own Sketch",
value={
"background": "./static/examples/background.jpeg",
"layers": None,
"composite": None
},
type="filepath",
image_mode="RGB",
layers=False,
elem_id="sketchpad-element"
)
with gr.Column():
draw_motion_prompt = gr.Textbox(
label="Prompt",
placeholder="Describe the motion...",
lines=2
)
draw_num_seeds = gr.Slider(
minimum=1,
maximum=10,
value=5,
step=1,
label="Seeds"
)
draw_lambda_ = gr.Slider(
minimum=0,
maximum=1,
value=0.5,
step=0.1,
label="Motion Strength"
)
draw_apply_filter = gr.Checkbox(
label="Apply GIFs Filters",
info="If Apply Filters is checked, non accurate results compared to input sketch will be filtered off",
value=False
)
sketchpad_generate_btn = gr.Button(
"Generate Animation",
variant="primary",
elem_classes="generate-btn",
interactive=True,
)
output_gallery = gr.Gallery(
label="Results",
elem_classes="output-gallery",
columns=3,
rows=2,
height="auto"
)
download_gifs = gr.Files(
label="Download GIFs"
)
# Event handlers
generate_btn.click(
fn=generate_output,
inputs=[
input_sketch,
apply_filter,
motion_prompt,
num_seeds,
lambda_
],
outputs=[output_gallery, download_gifs]
)
def reload_pad():
blank_pad ={
"background": "./static/examples/background.jpeg",
"layers": None,
"composite": None
}
return blank_pad
draw_sketchpad.clear(
fn=reload_pad,
inputs = None,
outputs = [draw_sketchpad],
queue=False
)
sketchpad_generate_btn.click(
fn=generate_output_from_sketchpad,
inputs=[
draw_sketchpad,
draw_apply_filter,
draw_motion_prompt,
draw_num_seeds,
draw_lambda_,
],
outputs=[output_gallery, download_gifs]
)
# Launch the app
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_api=False,
ssr_mode=False
)