File size: 8,552 Bytes
2bb21bd
a97cae4
2d61ea6
86055bb
f6bb466
 
7c82da9
16ca3cf
 
 
b3c49d3
7c82da9
b3c49d3
16ca3cf
 
 
 
 
 
 
 
 
 
 
 
 
2bb21bd
93e6bc9
3740288
2bb21bd
3740288
 
 
2bb21bd
 
 
3740288
 
 
 
2bb21bd
 
3740288
2bb21bd
 
3740288
2bb21bd
 
3740288
2bb21bd
3740288
2bb21bd
93e6bc9
5036e96
93e6bc9
a97cae4
 
 
93e6bc9
 
 
 
2bb21bd
ca0ea4c
c97092f
aa7631f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bb21bd
 
aa7631f
3740288
 
aa7631f
3740288
 
 
 
 
 
 
aa7631f
 
3740288
 
aa7631f
 
16ca3cf
 
aa7631f
 
 
 
 
 
 
 
 
 
2bb21bd
adb2981
36206e3
acf1b4a
aa7631f
3740288
 
 
 
aa7631f
 
64c2ce4
aa7631f
 
 
 
adb2981
42ca3ea
 
 
aa7631f
3740288
 
 
 
 
aa7631f
 
 
 
 
 
 
d6b9bfb
 
 
9490d0e
aa7631f
 
 
 
 
 
 
 
 
d6b9bfb
 
 
ccb20b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42ca3ea
16ca3cf
3740288
16ca3cf
 
 
 
 
 
 
 
 
adb2981
 
 
42ca3ea
 
 
d6b9bfb
 
 
ccb20b8
 
 
2bb21bd
4d300d7
 
 
6dfd871
4d300d7
 
 
 
 
2bb21bd
 
 
 
 
a384cce
2bb21bd
 
57f1b5a
 
afba875
4df9c3c
3740288
 
 
 
 
 
 
 
 
4df9c3c
 
16ca3cf
afba875
 
 
 
 
16ca3cf
d83c819
 
16ca3cf
aceed58
d83c819
16ca3cf
27835ac
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import gradio as gr
from gradio_client import Client, handle_file
import os
import random
import json
import re
import numpy as np
from moviepy.editor import VideoFileClip
from moviepy.audio.AudioClip import AudioClip

hf_token = os.environ.get("HF_TKN")
MAX_SEED = np.iinfo(np.int32).max

def extract_audio(video_in):
    input_video = video_in
    output_audio = 'audio.wav'
    
    # Open the video file and extract the audio
    video_clip = VideoFileClip(input_video)
    audio_clip = video_clip.audio
    
    # Save the audio as a .wav file
    audio_clip.write_audiofile(output_audio, fps=44100)  # Use 44100 Hz as the sample rate for .wav files  
    print("Audio extraction complete.")

    return 'audio.wav'

def get_caption_from_kosmos(image_in):
    kosmos2_client = Client("fffiloni/Kosmos-2-API", hf_token=hf_token)
    kosmos2_result = kosmos2_client.predict(
		image_input=handle_file(image_in),
		text_input="Detailed",
		api_name="/generate_predictions"
    )
    print(f"KOSMOS2 RETURNS: {kosmos2_result}")

    data = kosmos2_result[1]

    # Extract and combine tokens starting from the second element
    sentence = ''.join(item['token'] for item in data[1:])

    # Find the last occurrence of "."
    #last_period_index = full_sentence.rfind('.')

    # Truncate the string up to the last period
    #truncated_caption = full_sentence[:last_period_index + 1]

    # print(truncated_caption)
    #print(f"\n—\nIMAGE CAPTION: {truncated_caption}")
    
    return sentence

def get_caption(image_in):
    client = Client("fffiloni/moondream1", hf_token=hf_token)
    result = client.predict(
    		image=handle_file(image_in),
    		question="Describe precisely the image in one sentence.",
    		api_name="/predict"
    )
    print(result)
    return result

def get_magnet(prompt):
    amended_prompt = f"{prompt}"
    print(amended_prompt)
    try:
        client = Client("https://fffiloni-magnet.hf.space/")
        result = client.predict(
            "facebook/audio-magnet-medium",	# Literal['facebook/magnet-small-10secs', 'facebook/magnet-medium-10secs', 'facebook/magnet-small-30secs', 'facebook/magnet-medium-30secs', 'facebook/audio-magnet-small', 'facebook/audio-magnet-medium']  in 'Model' Radio component
            "",	# str  in 'Model Path (custom models)' Textbox component
            amended_prompt,	# str  in 'Input Text' Textbox component
            3,	# float  in 'Temperature' Number component
            0.9,	# float  in 'Top-p' Number component
            10,	# float  in 'Max CFG coefficient' Number component
            1,	# float  in 'Min CFG coefficient' Number component
            20,	# float  in 'Decoding Steps (stage 1)' Number component
            10,	# float  in 'Decoding Steps (stage 2)' Number component
            10,	# float  in 'Decoding Steps (stage 3)' Number component
            10,	# float  in 'Decoding Steps (stage 4)' Number component
            "prod-stride1 (new!)",	# Literal['max-nonoverlap', 'prod-stride1 (new!)']  in 'Span Scoring' Radio component
            api_name="/predict_full"
        )
        print(result)
        return result[1]
    except:
        raise gr.Error("MAGNet space API is not ready, please try again in few minutes ")

def get_audioldm(prompt):
    try:
        client = Client("fffiloni/audioldm2-text2audio-text2music-API", hf_token=hf_token)
        seed = random.randint(0, MAX_SEED)
        result = client.predict(
            text=prompt,	# str in 'Input text' Textbox component
            negative_prompt="Low quality. Music.",	# str in 'Negative prompt' Textbox component
            duration=10,	# int | float (numeric value between 5 and 15) in 'Duration (seconds)' Slider component
            guidance_scale=6.5,	# int | float (numeric value between 0 and 7) in 'Guidance scale' Slider component
            random_seed=seed,	# int | float in 'Seed' Number component
            n_candidates=3,	# int | float (numeric value between 1 and 5) in 'Number waveforms to generate' Slider component
            api_name="/text2audio"
        )
        print(result)
        
        return result
    except:
        raise gr.Error("AudioLDM space API is not ready, please try again in few minutes ")

def get_audiogen(prompt):
    try: 
        client = Client("https://fffiloni-audiogen.hf.space/")
        result = client.predict(
            prompt,
            10,
            api_name="/infer"
        )
        return result
    except:
        raise gr.Error("AudioGen space API is not ready, please try again in few minutes ")

def get_tango(prompt):
    try:
        client = Client("fffiloni/tango", hf_token=hf_token)
        result = client.predict(
        		prompt=prompt,
        		steps=100,
        		guidance=3,
        		api_name="/predict"
        )
        print(result)
        return result
    except:
        raise gr.Error("Tango space API is not ready, please try again in few minutes ")
    
    

def get_tango2(prompt):
    try:
        client = Client("declare-lab/tango2")
        result = client.predict(
        		prompt=prompt,
        		output_format="wav",
        		steps=100,
        		guidance=3,
        		api_name="/predict"
        )
        print(result)
        return result
    except:
        raise gr.Error("Tango2 space API is not ready, please try again in few minutes ")
    
    

def get_stable_audio_open(prompt):
    try:
        client = Client("fffiloni/Stable-Audio-Open-A10", hf_token=hf_token)
        result = client.predict(
    		prompt=prompt,
    		seconds_total=30,
    		steps=100,
    		cfg_scale=7,
    		api_name="/predict"
        )
        print(result)
        return result
    except:
        raise gr.Error("Stable Audio Open space API is not ready, please try again in few minutes ")
    
def get_ezaudio(prompt):
    try:
        client = Client("OpenSound/EzAudio")
        result = client.predict(
        		text=prompt,
        		length=10,
        		guidance_scale=5,
        		guidance_rescale=0.75,
        		ddim_steps=50,
        		eta=1,
        		random_seed=0,
        		randomize_seed=True,
        		api_name="/generate_audio"
        )
        print(result)
        return result
    except:
        raise gr.Error("EzAudio space API is not ready, please try again in few minutes ")
    
def infer(image_in, chosen_model):
    caption = get_caption_from_kosmos(image_in)
    if chosen_model == "MAGNet" :
        magnet_result = get_magnet(caption)
        return magnet_result
    elif chosen_model == "AudioLDM-2" : 
        audioldm_result = get_audioldm(caption)
        return audioldm_result
    elif chosen_model == "AudioGen" :
        audiogen_result = get_audiogen(caption)
        return audiogen_result
    elif chosen_model == "Tango" :
        tango_result = get_tango(caption)
        return tango_result
    elif chosen_model == "Tango 2" :
        tango2_result = get_tango2(caption)
        return tango2_result
    elif chosen_model == "Stable Audio Open" :
        stable_audio_open_result = get_stable_audio_open(caption)
        return stable_audio_open_result
    elif chosen_model == "EzAudio" :
        ezaudio_result = get_ezaudio(caption)
        return ezaudio_result

css="""
#col-container{
    margin: 0 auto;
    max-width: 800px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.HTML("""
        <h2 style="text-align: center;">
            Image to SFX
        </h2>
        <p style="text-align: center;">
            Compare sound effects generation models from image caption.
        </p>
        """)
        
        with gr.Column():
            image_in = gr.Image(sources=["upload"], type="filepath", label="Image input")
            with gr.Row():
                chosen_model = gr.Dropdown(label="Choose a model", choices=[
                    #"MAGNet", 
                    "AudioLDM-2", 
                    #"AudioGen", 
                    "Tango", 
                    "Tango 2", 
                    "Stable Audio Open", 
                    "EzAudio"
                ], value="AudioLDM-2")
                submit_btn = gr.Button("Submit")
        with gr.Column():
            audio_o = gr.Audio(label="Audio output")

        gr.Examples(
            examples = [["oiseau.png", "AudioLDM-2"]],
            inputs = [image_in, chosen_model]
        )
    
    submit_btn.click(
        fn=infer,
        inputs=[image_in, chosen_model],
        outputs=[audio_o],
    )

demo.queue(max_size=10).launch(debug=True, show_error=True)