Spaces:
Running
on
A10G
Running
on
A10G
File size: 15,466 Bytes
4725118 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""Various utilities for audio convertion (pcm format, sample rate and channels),
and volume normalization."""
import sys
import typing as tp
import julius
import torch
import torchaudio
import numpy as np
from .chords import Chords
chords = Chords() # initiate object
def convert_audio_channels(wav: torch.Tensor, channels: int = 2) -> torch.Tensor:
"""Convert audio to the given number of channels.
Args:
wav (torch.Tensor): Audio wave of shape [B, C, T].
channels (int): Expected number of channels as output.
Returns:
torch.Tensor: Downmixed or unchanged audio wave [B, C, T].
"""
*shape, src_channels, length = wav.shape
if src_channels == channels:
pass
elif channels == 1:
# Case 1:
# The caller asked 1-channel audio, and the stream has multiple
# channels, downmix all channels.
wav = wav.mean(dim=-2, keepdim=True)
elif src_channels == 1:
# Case 2:
# The caller asked for multiple channels, but the input file has
# a single channel, replicate the audio over all channels.
wav = wav.expand(*shape, channels, length)
elif src_channels >= channels:
# Case 3:
# The caller asked for multiple channels, and the input file has
# more channels than requested. In that case return the first channels.
wav = wav[..., :channels, :]
else:
# Case 4: What is a reasonable choice here?
raise ValueError('The audio file has less channels than requested but is not mono.')
return wav
def convert_audio(wav: torch.Tensor, from_rate: float,
to_rate: float, to_channels: int) -> torch.Tensor:
"""Convert audio to new sample rate and number of audio channels."""
wav = julius.resample_frac(wav, int(from_rate), int(to_rate))
wav = convert_audio_channels(wav, to_channels)
return wav
def normalize_loudness(wav: torch.Tensor, sample_rate: int, loudness_headroom_db: float = 14,
loudness_compressor: bool = False, energy_floor: float = 2e-3):
"""Normalize an input signal to a user loudness in dB LKFS.
Audio loudness is defined according to the ITU-R BS.1770-4 recommendation.
Args:
wav (torch.Tensor): Input multichannel audio data.
sample_rate (int): Sample rate.
loudness_headroom_db (float): Target loudness of the output in dB LUFS.
loudness_compressor (bool): Uses tanh for soft clipping.
energy_floor (float): anything below that RMS level will not be rescaled.
Returns:
torch.Tensor: Loudness normalized output data.
"""
energy = wav.pow(2).mean().sqrt().item()
if energy < energy_floor:
return wav
transform = torchaudio.transforms.Loudness(sample_rate)
input_loudness_db = transform(wav).item()
# calculate the gain needed to scale to the desired loudness level
delta_loudness = -loudness_headroom_db - input_loudness_db
gain = 10.0 ** (delta_loudness / 20.0)
output = gain * wav
if loudness_compressor:
output = torch.tanh(output)
assert output.isfinite().all(), (input_loudness_db, wav.pow(2).mean().sqrt())
return output
def _clip_wav(wav: torch.Tensor, log_clipping: bool = False, stem_name: tp.Optional[str] = None) -> None:
"""Utility function to clip the audio with logging if specified."""
max_scale = wav.abs().max()
if log_clipping and max_scale > 1:
clamp_prob = (wav.abs() > 1).float().mean().item()
print(f"CLIPPING {stem_name or ''} happening with proba (a bit of clipping is okay):",
clamp_prob, "maximum scale: ", max_scale.item(), file=sys.stderr)
wav.clamp_(-1, 1)
def normalize_audio(wav: torch.Tensor, normalize: bool = True,
strategy: str = 'peak', peak_clip_headroom_db: float = 1,
rms_headroom_db: float = 18, loudness_headroom_db: float = 14,
loudness_compressor: bool = False, log_clipping: bool = False,
sample_rate: tp.Optional[int] = None,
stem_name: tp.Optional[str] = None) -> torch.Tensor:
"""Normalize the audio according to the prescribed strategy (see after).
Args:
wav (torch.Tensor): Audio data.
normalize (bool): if `True` (default), normalizes according to the prescribed
strategy (see after). If `False`, the strategy is only used in case clipping
would happen.
strategy (str): Can be either 'clip', 'peak', or 'rms'. Default is 'peak',
i.e. audio is normalized by its largest value. RMS normalizes by root-mean-square
with extra headroom to avoid clipping. 'clip' just clips.
peak_clip_headroom_db (float): Headroom in dB when doing 'peak' or 'clip' strategy.
rms_headroom_db (float): Headroom in dB when doing 'rms' strategy. This must be much larger
than the `peak_clip` one to avoid further clipping.
loudness_headroom_db (float): Target loudness for loudness normalization.
loudness_compressor (bool): If True, uses tanh based soft clipping.
log_clipping (bool): If True, basic logging on stderr when clipping still
occurs despite strategy (only for 'rms').
sample_rate (int): Sample rate for the audio data (required for loudness).
stem_name (str, optional): Stem name for clipping logging.
Returns:
torch.Tensor: Normalized audio.
"""
scale_peak = 10 ** (-peak_clip_headroom_db / 20)
scale_rms = 10 ** (-rms_headroom_db / 20)
if strategy == 'peak':
rescaling = (scale_peak / wav.abs().max())
if normalize or rescaling < 1:
wav = wav * rescaling
elif strategy == 'clip':
wav = wav.clamp(-scale_peak, scale_peak)
elif strategy == 'rms':
mono = wav.mean(dim=0)
rescaling = scale_rms / mono.pow(2).mean().sqrt()
if normalize or rescaling < 1:
wav = wav * rescaling
_clip_wav(wav, log_clipping=log_clipping, stem_name=stem_name)
elif strategy == 'loudness':
assert sample_rate is not None, "Loudness normalization requires sample rate."
wav = normalize_loudness(wav, sample_rate, loudness_headroom_db, loudness_compressor)
_clip_wav(wav, log_clipping=log_clipping, stem_name=stem_name)
else:
assert wav.abs().max() < 1
assert strategy == '' or strategy == 'none', f"Unexpected strategy: '{strategy}'"
return wav
def f32_pcm(wav: torch.Tensor) -> torch.Tensor:
"""Convert audio to float 32 bits PCM format.
"""
if wav.dtype.is_floating_point:
return wav
elif wav.dtype == torch.int16:
return wav.float() / 2**15
elif wav.dtype == torch.int32:
return wav.float() / 2**31
raise ValueError(f"Unsupported wav dtype: {wav.dtype}")
def i16_pcm(wav: torch.Tensor) -> torch.Tensor:
"""Convert audio to int 16 bits PCM format.
..Warning:: There exist many formula for doing this conversion. None are perfect
due to the asymmetry of the int16 range. One either have possible clipping, DC offset,
or inconsistencies with f32_pcm. If the given wav doesn't have enough headroom,
it is possible that `i16_pcm(f32_pcm)) != Identity`.
"""
if wav.dtype.is_floating_point:
assert wav.abs().max() <= 1
candidate = (wav * 2 ** 15).round()
if candidate.max() >= 2 ** 15: # clipping would occur
candidate = (wav * (2 ** 15 - 1)).round()
return candidate.short()
else:
assert wav.dtype == torch.int16
return wav
def convert_txtchord2chroma_orig(text_chords, bpms, meters, gen_sec):
chromas = []
# total_len = int(gen_sec * 44100 / 512)
total_len = int(gen_sec * 32000 / 640)
for chord, bpm, meter in zip(text_chords, bpms, meters):
phr_len = int(60. / bpm * (meter * 4) * 32000 / 640)
# phr_len = int(60. / bpm * (meter * 4) * 44100 / 2048)
chroma = torch.zeros([total_len, 12])
count = 0
offset = 0
stext = chord.split(" ")
timebin = phr_len // 4 # frames per bar
while count < total_len:
for tokens in stext:
if count >= total_len:
break
stoken = tokens.split(',')
for token in stoken:
off_timebin = timebin + offset
rounded_timebin = round(off_timebin)
offset = off_timebin - rounded_timebin
offset = offset/len(stoken)
add_step = rounded_timebin//len(stoken)
mhot = chords.chord(token)
rolled = np.roll(mhot[2], mhot[0])
for i in range(count, count + add_step):
if count >= total_len:
break
chroma[i] = torch.Tensor(rolled)
count += 1
chromas.append(chroma)
chroma = torch.stack(chromas)
return chroma
def convert_txtchord2chroma(chord, bpm, meter, gen_sec):
total_len = int(gen_sec * 32000 / 640)
phr_len = int(60. / bpm * (meter * 4) * 32000 / 640)
# phr_len = int(60. / bpm * (meter * 4) * 44100 / 2048)
chroma = torch.zeros([total_len, 12])
count = 0
offset = 0
stext = chord.split(" ")
timebin = phr_len // 4 # frames per bar
while count < total_len:
for tokens in stext:
if count >= total_len:
break
stoken = tokens.split(',')
for token in stoken:
off_timebin = timebin + offset
rounded_timebin = round(off_timebin)
offset = off_timebin - rounded_timebin
offset = offset/len(stoken)
add_step = rounded_timebin//len(stoken)
mhot = chords.chord(token)
rolled = np.roll(mhot[2], mhot[0])
for i in range(count, count + add_step):
if count >= total_len:
break
chroma[i] = torch.Tensor(rolled)
count += 1
return chroma
def convert_txtchord2chroma_24(chord, bpm, meter, gen_sec):
total_len = int(gen_sec * 32000 / 640)
phr_len = int(60. / bpm * (meter * 4) * 32000 / 640)
# phr_len = int(60. / bpm * (meter * 4) * 44100 / 2048)
chroma = torch.zeros([total_len, 24])
count = 0
offset = 0
stext = chord.split(" ")
timebin = phr_len // 4 # frames per bar
while count < total_len:
for tokens in stext:
if count >= total_len:
break
stoken = tokens.split(',')
for token in stoken:
off_timebin = timebin + offset
rounded_timebin = round(off_timebin)
offset = off_timebin - rounded_timebin
offset = offset/len(stoken)
add_step = rounded_timebin//len(stoken)
root, bass, ivs_vec, _ = chords.chord(token)
root_vec = torch.zeros(12)
root_vec[root] = 1
final_vec = np.concatenate([root_vec, ivs_vec]) # [C]
for i in range(count, count + add_step):
if count >= total_len:
break
chroma[i] = torch.Tensor(final_vec)
count += 1
return chroma
def get_chroma_chord_from_lab(chord_path, gen_sec):
total_len = int(gen_sec * 32000 / 640)
feat_hz = 32000/640
intervals = []
labels = []
feat_chord = np.zeros((12, total_len)) # root| ivs
with open(chord_path, 'r') as f:
for line in f.readlines():
splits = line.split()
if len(splits) == 3:
st_sec, ed_sec, ctag = splits
st_sec = float(st_sec)
ed_sec = float(ed_sec)
st_frame = int(st_sec*feat_hz)
ed_frame = int(ed_sec*feat_hz)
mhot = chords.chord(ctag)
final_vec = np.roll(mhot[2], mhot[0])
final_vec = final_vec[..., None] # [C, T]
feat_chord[:, st_frame:ed_frame] = final_vec
feat_chord = torch.from_numpy(feat_chord)
return feat_chord
def get_chroma_chord_from_text(text_chord, bpm, meter, gen_sec):
total_len = int(gen_sec * 32000 / 640)
phr_len = int(60. / bpm * (meter * 4) * 32000 / 640)
chroma = np.zeros([12, total_len])
count = 0
offset = 0
stext = chord.split(" ")
timebin = phr_len // 4 # frames per bar
while count < total_len:
for tokens in stext:
if count >= total_len:
break
stoken = tokens.split(',')
for token in stoken:
off_timebin = timebin + offset
rounded_timebin = round(off_timebin)
offset = off_timebin - rounded_timebin
offset = offset/len(stoken)
add_step = rounded_timebin//len(stoken)
mhot = chords.chord(token)
final_vec = np.roll(mhot[2], mhot[0])
final_vec = final_vec[..., None] # [C, T]
for i in range(count, count + add_step):
if count >= total_len:
break
chroma[:, i] = final_vec
count += 1
feat_chord = torch.from_numpy(feat_chord)
return feat_chord
def get_beat_from_npy(beat_path, gen_sec):
total_len = int(gen_sec * 32000 / 640)
beats_np = np.load(beat_path, allow_pickle=True)
feat_beats = np.zeros((2, total_len))
meter = int(max(beats_np.T[1]))
beat_time = beats_np[:, 0]
bar_time = beats_np[np.where(beats_np[:, 1] == 1)[0], 0]
beat_frame = [int((t)*feat_hz) for t in beat_time if (t >= 0 and t < duration)]
bar_frame =[int((t)*feat_hz) for t in bar_time if (t >= 0 and t < duration)]
feat_beats[0, beat_frame] = 1
feat_beats[1, bar_frame] = 1
kernel = np.array([0.05, 0.1, 0.3, 0.9, 0.3, 0.1, 0.05])
feat_beats[0] = np.convolve(feat_beats[0] , kernel, 'same') # apply soft kernel
beat_events = feat_beats[0] + feat_beats[1]
beat_events = torch.tensor(beat_events).unsqueeze(0) # [T] -> [1, T]
bpm = 60 // np.mean([j-i for i, j in zip(beat_time[:-1], beat_time[1:])])
return beat_events, bpm, meter
def get_beat_from_bpm(bpm, meter, gen_sec):
total_len = int(gen_sec * 32000 / 640)
feat_beats = np.zeros((2, total_len))
beat_time_gap = 60 / bpm
beat_gap = 60 / bpm * feat_hz
beat_time = np.arange(0, duration, beat_time_gap)
beat_frame = np.round(np.arange(0, n_frames_feat, beat_gap)).astype(int)
if beat_frame[-1] == n_frames_feat:
beat_frame = beat_frame[:-1]
bar_frame = beat_frame[::meter]
feat_beats[0, beat_frame] = 1
feat_beats[1, bar_frame] = 1
kernel = np.array([0.05, 0.1, 0.3, 0.9, 0.3, 0.1, 0.05])
feat_beats[0] = np.convolve(feat_beats[0] , kernel, 'same') # apply soft kernel
beat_events = feat_beats[0] + feat_beats[1]
beat_events = torch.tensor(beat_events).unsqueeze(0) # [T] -> [1, T]
return beat_events, beat_time, meter |