File size: 15,466 Bytes
4725118
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""Various utilities for audio convertion (pcm format, sample rate and channels),
and volume normalization."""
import sys
import typing as tp

import julius
import torch
import torchaudio
import numpy as np

from .chords import Chords
chords = Chords() # initiate object


def convert_audio_channels(wav: torch.Tensor, channels: int = 2) -> torch.Tensor:
    """Convert audio to the given number of channels.

    Args:
        wav (torch.Tensor): Audio wave of shape [B, C, T].
        channels (int): Expected number of channels as output.
    Returns:
        torch.Tensor: Downmixed or unchanged audio wave [B, C, T].
    """
    *shape, src_channels, length = wav.shape
    if src_channels == channels:
        pass
    elif channels == 1:
        # Case 1:
        # The caller asked 1-channel audio, and the stream has multiple
        # channels, downmix all channels.
        wav = wav.mean(dim=-2, keepdim=True)
    elif src_channels == 1:
        # Case 2:
        # The caller asked for multiple channels, but the input file has
        # a single channel, replicate the audio over all channels.
        wav = wav.expand(*shape, channels, length)
    elif src_channels >= channels:
        # Case 3:
        # The caller asked for multiple channels, and the input file has
        # more channels than requested. In that case return the first channels.
        wav = wav[..., :channels, :]
    else:
        # Case 4: What is a reasonable choice here?
        raise ValueError('The audio file has less channels than requested but is not mono.')
    return wav


def convert_audio(wav: torch.Tensor, from_rate: float,
                  to_rate: float, to_channels: int) -> torch.Tensor:
    """Convert audio to new sample rate and number of audio channels."""
    wav = julius.resample_frac(wav, int(from_rate), int(to_rate))
    wav = convert_audio_channels(wav, to_channels)
    return wav


def normalize_loudness(wav: torch.Tensor, sample_rate: int, loudness_headroom_db: float = 14,
                       loudness_compressor: bool = False, energy_floor: float = 2e-3):
    """Normalize an input signal to a user loudness in dB LKFS.
    Audio loudness is defined according to the ITU-R BS.1770-4 recommendation.

    Args:
        wav (torch.Tensor): Input multichannel audio data.
        sample_rate (int): Sample rate.
        loudness_headroom_db (float): Target loudness of the output in dB LUFS.
        loudness_compressor (bool): Uses tanh for soft clipping.
        energy_floor (float): anything below that RMS level will not be rescaled.
    Returns:
        torch.Tensor: Loudness normalized output data.
    """
    energy = wav.pow(2).mean().sqrt().item()
    if energy < energy_floor:
        return wav
    transform = torchaudio.transforms.Loudness(sample_rate)
    input_loudness_db = transform(wav).item()
    # calculate the gain needed to scale to the desired loudness level
    delta_loudness = -loudness_headroom_db - input_loudness_db
    gain = 10.0 ** (delta_loudness / 20.0)
    output = gain * wav
    if loudness_compressor:
        output = torch.tanh(output)
    assert output.isfinite().all(), (input_loudness_db, wav.pow(2).mean().sqrt())
    return output


def _clip_wav(wav: torch.Tensor, log_clipping: bool = False, stem_name: tp.Optional[str] = None) -> None:
    """Utility function to clip the audio with logging if specified."""
    max_scale = wav.abs().max()
    if log_clipping and max_scale > 1:
        clamp_prob = (wav.abs() > 1).float().mean().item()
        print(f"CLIPPING {stem_name or ''} happening with proba (a bit of clipping is okay):",
              clamp_prob, "maximum scale: ", max_scale.item(), file=sys.stderr)
    wav.clamp_(-1, 1)


def normalize_audio(wav: torch.Tensor, normalize: bool = True,
                    strategy: str = 'peak', peak_clip_headroom_db: float = 1,
                    rms_headroom_db: float = 18, loudness_headroom_db: float = 14,
                    loudness_compressor: bool = False, log_clipping: bool = False,
                    sample_rate: tp.Optional[int] = None,
                    stem_name: tp.Optional[str] = None) -> torch.Tensor:
    """Normalize the audio according to the prescribed strategy (see after).

    Args:
        wav (torch.Tensor): Audio data.
        normalize (bool): if `True` (default), normalizes according to the prescribed
            strategy (see after). If `False`, the strategy is only used in case clipping
            would happen.
        strategy (str): Can be either 'clip', 'peak', or 'rms'. Default is 'peak',
            i.e. audio is normalized by its largest value. RMS normalizes by root-mean-square
            with extra headroom to avoid clipping. 'clip' just clips.
        peak_clip_headroom_db (float): Headroom in dB when doing 'peak' or 'clip' strategy.
        rms_headroom_db (float): Headroom in dB when doing 'rms' strategy. This must be much larger
            than the `peak_clip` one to avoid further clipping.
        loudness_headroom_db (float): Target loudness for loudness normalization.
        loudness_compressor (bool): If True, uses tanh based soft clipping.
        log_clipping (bool): If True, basic logging on stderr when clipping still
            occurs despite strategy (only for 'rms').
        sample_rate (int): Sample rate for the audio data (required for loudness).
        stem_name (str, optional): Stem name for clipping logging.
    Returns:
        torch.Tensor: Normalized audio.
    """
    scale_peak = 10 ** (-peak_clip_headroom_db / 20)
    scale_rms = 10 ** (-rms_headroom_db / 20)
    if strategy == 'peak':
        rescaling = (scale_peak / wav.abs().max())
        if normalize or rescaling < 1:
            wav = wav * rescaling
    elif strategy == 'clip':
        wav = wav.clamp(-scale_peak, scale_peak)
    elif strategy == 'rms':
        mono = wav.mean(dim=0)
        rescaling = scale_rms / mono.pow(2).mean().sqrt()
        if normalize or rescaling < 1:
            wav = wav * rescaling
        _clip_wav(wav, log_clipping=log_clipping, stem_name=stem_name)
    elif strategy == 'loudness':
        assert sample_rate is not None, "Loudness normalization requires sample rate."
        wav = normalize_loudness(wav, sample_rate, loudness_headroom_db, loudness_compressor)
        _clip_wav(wav, log_clipping=log_clipping, stem_name=stem_name)
    else:
        assert wav.abs().max() < 1
        assert strategy == '' or strategy == 'none', f"Unexpected strategy: '{strategy}'"
    return wav


def f32_pcm(wav: torch.Tensor) -> torch.Tensor:
    """Convert audio to float 32 bits PCM format.
    """
    if wav.dtype.is_floating_point:
        return wav
    elif wav.dtype == torch.int16:
        return wav.float() / 2**15
    elif wav.dtype == torch.int32:
        return wav.float() / 2**31
    raise ValueError(f"Unsupported wav dtype: {wav.dtype}")


def i16_pcm(wav: torch.Tensor) -> torch.Tensor:
    """Convert audio to int 16 bits PCM format.

    ..Warning:: There exist many formula for doing this conversion. None are perfect
    due to the asymmetry of the int16 range. One either have possible clipping, DC offset,
    or inconsistencies with f32_pcm. If the given wav doesn't have enough headroom,
    it is possible that `i16_pcm(f32_pcm)) != Identity`.
    """
    if wav.dtype.is_floating_point:
        assert wav.abs().max() <= 1
        candidate = (wav * 2 ** 15).round()
        if candidate.max() >= 2 ** 15:  # clipping would occur
            candidate = (wav * (2 ** 15 - 1)).round()
        return candidate.short()
    else:
        assert wav.dtype == torch.int16
        return wav

def convert_txtchord2chroma_orig(text_chords, bpms, meters, gen_sec):
    chromas = []
    # total_len = int(gen_sec * 44100 / 512)
    total_len = int(gen_sec * 32000 / 640)
    for chord, bpm, meter in zip(text_chords, bpms, meters):
        phr_len = int(60. / bpm * (meter * 4) * 32000 / 640)
        # phr_len = int(60. / bpm * (meter * 4) * 44100 / 2048)
        chroma = torch.zeros([total_len, 12])
        count = 0
        offset = 0
        
        stext = chord.split(" ")
        timebin = phr_len // 4 # frames per bar
        while count < total_len:
            for tokens in stext:
                if count >= total_len: 
                    break
                stoken = tokens.split(',')
                for token in stoken:
                    off_timebin = timebin + offset
                    rounded_timebin = round(off_timebin)
                    offset = off_timebin - rounded_timebin
                    offset = offset/len(stoken)
                    add_step = rounded_timebin//len(stoken)
                    mhot = chords.chord(token)
                    rolled = np.roll(mhot[2], mhot[0])
                    for i in range(count, count + add_step):
                        if count >= total_len: 
                            break
                        chroma[i] = torch.Tensor(rolled)
                        count += 1
        chromas.append(chroma)
    chroma = torch.stack(chromas)
    return chroma

def convert_txtchord2chroma(chord, bpm, meter, gen_sec):
    total_len = int(gen_sec * 32000 / 640)

    phr_len = int(60. / bpm * (meter * 4) * 32000 / 640)
    # phr_len = int(60. / bpm * (meter * 4) * 44100 / 2048)
    chroma = torch.zeros([total_len, 12])
    count = 0
    offset = 0
    
    stext = chord.split(" ")
    timebin = phr_len // 4 # frames per bar
    while count < total_len:
        for tokens in stext:
            if count >= total_len: 
                break
            stoken = tokens.split(',')
            for token in stoken:
                off_timebin = timebin + offset
                rounded_timebin = round(off_timebin)
                offset = off_timebin - rounded_timebin
                offset = offset/len(stoken)
                add_step = rounded_timebin//len(stoken)
                mhot = chords.chord(token)
                rolled = np.roll(mhot[2], mhot[0])
                for i in range(count, count + add_step):
                    if count >= total_len: 
                        break
                    chroma[i] = torch.Tensor(rolled)
                    count += 1
    return chroma



def convert_txtchord2chroma_24(chord, bpm, meter, gen_sec):
    total_len = int(gen_sec * 32000 / 640)

    phr_len = int(60. / bpm * (meter * 4) * 32000 / 640)
    # phr_len = int(60. / bpm * (meter * 4) * 44100 / 2048)
    chroma = torch.zeros([total_len, 24])
    count = 0
    offset = 0
    
    stext = chord.split(" ")
    timebin = phr_len // 4 # frames per bar
    while count < total_len:
        for tokens in stext:
            if count >= total_len: 
                break
            stoken = tokens.split(',')
            for token in stoken:
                off_timebin = timebin + offset
                rounded_timebin = round(off_timebin)
                offset = off_timebin - rounded_timebin
                offset = offset/len(stoken)
                add_step = rounded_timebin//len(stoken)

                root, bass, ivs_vec, _ = chords.chord(token)
                root_vec = torch.zeros(12)
                root_vec[root] = 1
                final_vec = np.concatenate([root_vec, ivs_vec]) # [C]
                for i in range(count, count + add_step):
                    if count >= total_len: 
                        break
                    chroma[i] = torch.Tensor(final_vec)
                    count += 1
    return chroma

def get_chroma_chord_from_lab(chord_path, gen_sec):
    total_len = int(gen_sec * 32000 / 640)
    feat_hz = 32000/640
    intervals = []
    labels = []
    feat_chord = np.zeros((12, total_len)) # root| ivs
    with open(chord_path, 'r') as f:
        for line in f.readlines():
            splits = line.split()
            if len(splits) == 3:
                st_sec, ed_sec, ctag = splits
                st_sec = float(st_sec)
                ed_sec = float(ed_sec)

                st_frame = int(st_sec*feat_hz)
                ed_frame = int(ed_sec*feat_hz)

                mhot = chords.chord(ctag)
                final_vec = np.roll(mhot[2], mhot[0])

                final_vec = final_vec[..., None] # [C, T]
                feat_chord[:, st_frame:ed_frame] = final_vec
    feat_chord = torch.from_numpy(feat_chord)
    return feat_chord


def get_chroma_chord_from_text(text_chord, bpm, meter, gen_sec):
    total_len = int(gen_sec * 32000 / 640)

    phr_len = int(60. / bpm * (meter * 4) * 32000 / 640)
    chroma = np.zeros([12, total_len])
    count = 0
    offset = 0
    
    stext = chord.split(" ")
    timebin = phr_len // 4 # frames per bar
    while count < total_len:
        for tokens in stext:
            if count >= total_len: 
                break
            stoken = tokens.split(',')
            for token in stoken:
                off_timebin = timebin + offset
                rounded_timebin = round(off_timebin)
                offset = off_timebin - rounded_timebin
                offset = offset/len(stoken)
                add_step = rounded_timebin//len(stoken)
                mhot = chords.chord(token)
                final_vec = np.roll(mhot[2], mhot[0])
                final_vec = final_vec[..., None] # [C, T]

                for i in range(count, count + add_step):
                    if count >= total_len: 
                        break
                    chroma[:, i] = final_vec
                    count += 1
    feat_chord = torch.from_numpy(feat_chord)
    return feat_chord

def get_beat_from_npy(beat_path, gen_sec):
    total_len = int(gen_sec * 32000 / 640) 

    beats_np = np.load(beat_path, allow_pickle=True)
    feat_beats = np.zeros((2, total_len))
    meter = int(max(beats_np.T[1]))
    beat_time = beats_np[:, 0]
    bar_time = beats_np[np.where(beats_np[:, 1] == 1)[0], 0]

    beat_frame = [int((t)*feat_hz) for t in beat_time if (t >= 0 and t < duration)]
    bar_frame =[int((t)*feat_hz) for t in bar_time if (t >= 0 and t < duration)]

    feat_beats[0, beat_frame] = 1
    feat_beats[1, bar_frame] = 1
    kernel = np.array([0.05, 0.1, 0.3, 0.9, 0.3, 0.1, 0.05])
    feat_beats[0] = np.convolve(feat_beats[0] , kernel, 'same') # apply soft kernel
    beat_events = feat_beats[0] + feat_beats[1]
    beat_events = torch.tensor(beat_events).unsqueeze(0) # [T] -> [1, T]

    bpm = 60 // np.mean([j-i for i, j in zip(beat_time[:-1], beat_time[1:])])
    return beat_events, bpm, meter

def get_beat_from_bpm(bpm, meter, gen_sec):
    total_len = int(gen_sec * 32000 / 640)

    feat_beats = np.zeros((2, total_len))

    beat_time_gap = 60 / bpm
    beat_gap = 60 / bpm * feat_hz
    
    beat_time = np.arange(0, duration, beat_time_gap)
    beat_frame = np.round(np.arange(0, n_frames_feat, beat_gap)).astype(int)
    if beat_frame[-1] == n_frames_feat:
        beat_frame = beat_frame[:-1]
    bar_frame = beat_frame[::meter]
    
    feat_beats[0, beat_frame] = 1
    feat_beats[1, bar_frame] = 1
    kernel = np.array([0.05, 0.1, 0.3, 0.9, 0.3, 0.1, 0.05])
    feat_beats[0] = np.convolve(feat_beats[0] , kernel, 'same') # apply soft kernel
    beat_events = feat_beats[0] + feat_beats[1]
    beat_events = torch.tensor(beat_events).unsqueeze(0) # [T] -> [1, T]
    return beat_events, beat_time, meter