Spaces:
Running
on
A10G
Running
on
A10G
File size: 13,546 Bytes
4725118 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""Compression models or wrapper around existing models.
Also defines the main interface that a model must follow to be usable as an audio tokenizer.
"""
from abc import ABC, abstractmethod
import logging
import math
from pathlib import Path
import typing as tp
import numpy as np
import torch
from torch import nn
from transformers import EncodecModel as HFEncodecModel
from .. import quantization as qt
logger = logging.getLogger()
class CompressionModel(ABC, nn.Module):
"""Base API for all compression model that aim at being used as audio tokenizers
with a language model.
"""
@abstractmethod
def forward(self, x: torch.Tensor) -> qt.QuantizedResult:
...
@abstractmethod
def encode(self, x: torch.Tensor) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]:
"""See `EncodecModel.encode`."""
...
@abstractmethod
def decode(self, codes: torch.Tensor, scale: tp.Optional[torch.Tensor] = None):
"""See `EncodecModel.decode`."""
...
@abstractmethod
def decode_latent(self, codes: torch.Tensor):
"""Decode from the discrete codes to continuous latent space."""
...
@property
@abstractmethod
def channels(self) -> int:
...
@property
@abstractmethod
def frame_rate(self) -> float:
...
@property
@abstractmethod
def sample_rate(self) -> int:
...
@property
@abstractmethod
def cardinality(self) -> int:
...
@property
@abstractmethod
def num_codebooks(self) -> int:
...
@property
@abstractmethod
def total_codebooks(self) -> int:
...
@abstractmethod
def set_num_codebooks(self, n: int):
"""Set the active number of codebooks used by the quantizer."""
...
@staticmethod
def get_pretrained(
name: str, device: tp.Union[torch.device, str] = 'cpu'
) -> 'CompressionModel':
"""Instantiate a CompressionModel from a given pretrained model.
Args:
name (Path or str): name of the pretrained model. See after.
device (torch.device or str): Device on which the model is loaded.
Pretrained models:
- dac_44khz (https://github.com/descriptinc/descript-audio-codec)
- dac_24khz (same)
- facebook/encodec_24khz (https://huggingface.co/facebook/encodec_24khz)
- facebook/encodec_32khz (https://huggingface.co/facebook/encodec_32khz)
- your own model on HugginFace. Export instructions to come...
"""
from . import builders, loaders
model: CompressionModel
if name in ['dac_44khz', 'dac_24khz']:
model_type = name.split('_')[1]
logger.info("Getting pretrained compression model from DAC %s", model_type)
model = DAC(model_type)
elif name in ['debug_compression_model']:
logger.info("Getting pretrained compression model for debug")
model = builders.get_debug_compression_model()
elif Path(name).exists():
# We assume here if the paths exist that it is in fact an AC checkpoint
# that was exported using `audiocraft.utils.export` functions.
model = loaders.load_compression_model(name, device=device)
else:
logger.info("Getting pretrained compression model from HF %s", name)
hf_model = HFEncodecModel.from_pretrained(name)
model = HFEncodecCompressionModel(hf_model).to(device)
return model.to(device).eval()
class EncodecModel(CompressionModel):
"""Encodec model operating on the raw waveform.
Args:
encoder (nn.Module): Encoder network.
decoder (nn.Module): Decoder network.
quantizer (qt.BaseQuantizer): Quantizer network.
frame_rate (int): Frame rate for the latent representation.
sample_rate (int): Audio sample rate.
channels (int): Number of audio channels.
causal (bool): Whether to use a causal version of the model.
renormalize (bool): Whether to renormalize the audio before running the model.
"""
# we need assignment to override the property in the abstract class,
# I couldn't find a better way...
frame_rate: float = 0
sample_rate: int = 0
channels: int = 0
def __init__(self,
encoder: nn.Module,
decoder: nn.Module,
quantizer: qt.BaseQuantizer,
frame_rate: int,
sample_rate: int,
channels: int,
causal: bool = False,
renormalize: bool = False):
super().__init__()
self.encoder = encoder
self.decoder = decoder
self.quantizer = quantizer
self.frame_rate = frame_rate
self.sample_rate = sample_rate
self.channels = channels
self.renormalize = renormalize
self.causal = causal
if self.causal:
# we force disabling here to avoid handling linear overlap of segments
# as supported in original EnCodec codebase.
assert not self.renormalize, 'Causal model does not support renormalize'
@property
def total_codebooks(self):
"""Total number of quantizer codebooks available."""
return self.quantizer.total_codebooks
@property
def num_codebooks(self):
"""Active number of codebooks used by the quantizer."""
return self.quantizer.num_codebooks
def set_num_codebooks(self, n: int):
"""Set the active number of codebooks used by the quantizer."""
self.quantizer.set_num_codebooks(n)
@property
def cardinality(self):
"""Cardinality of each codebook."""
return self.quantizer.bins
def preprocess(self, x: torch.Tensor) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]:
scale: tp.Optional[torch.Tensor]
if self.renormalize:
mono = x.mean(dim=1, keepdim=True)
volume = mono.pow(2).mean(dim=2, keepdim=True).sqrt()
scale = 1e-8 + volume
x = x / scale
scale = scale.view(-1, 1)
else:
scale = None
return x, scale
def postprocess(self,
x: torch.Tensor,
scale: tp.Optional[torch.Tensor] = None) -> torch.Tensor:
if scale is not None:
assert self.renormalize
x = x * scale.view(-1, 1, 1)
return x
def forward(self, x: torch.Tensor) -> qt.QuantizedResult:
assert x.dim() == 3
length = x.shape[-1]
x, scale = self.preprocess(x)
emb = self.encoder(x)
q_res = self.quantizer(emb, self.frame_rate)
out = self.decoder(q_res.x)
# remove extra padding added by the encoder and decoder
assert out.shape[-1] >= length, (out.shape[-1], length)
out = out[..., :length]
q_res.x = self.postprocess(out, scale)
return q_res
def encode(self, x: torch.Tensor) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]:
"""Encode the given input tensor to quantized representation along with scale parameter.
Args:
x (torch.Tensor): Float tensor of shape [B, C, T]
Returns:
codes, scale (tuple of torch.Tensor, torch.Tensor): Tuple composed of:
codes a float tensor of shape [B, K, T] with K the number of codebooks used and T the timestep.
scale a float tensor containing the scale for audio renormalizealization.
"""
assert x.dim() == 3
x, scale = self.preprocess(x)
emb = self.encoder(x)
codes = self.quantizer.encode(emb)
return codes, scale
def decode(self, codes: torch.Tensor, scale: tp.Optional[torch.Tensor] = None):
"""Decode the given codes to a reconstructed representation, using the scale to perform
audio denormalization if needed.
Args:
codes (torch.Tensor): Int tensor of shape [B, K, T]
scale (torch.Tensor, optional): Float tensor containing the scale value.
Returns:
out (torch.Tensor): Float tensor of shape [B, C, T], the reconstructed audio.
"""
emb = self.decode_latent(codes)
out = self.decoder(emb)
out = self.postprocess(out, scale)
# out contains extra padding added by the encoder and decoder
return out
def decode_latent(self, codes: torch.Tensor):
"""Decode from the discrete codes to continuous latent space."""
return self.quantizer.decode(codes)
class DAC(CompressionModel):
def __init__(self, model_type: str = "44khz"):
super().__init__()
try:
import dac.utils
except ImportError:
raise RuntimeError("Could not import dac, make sure it is installed, "
"please run `pip install descript-audio-codec`")
self.model = dac.utils.load_model(model_type=model_type)
self.n_quantizers = self.total_codebooks
self.model.eval()
def forward(self, x: torch.Tensor) -> qt.QuantizedResult:
# We don't support training with this.
raise NotImplementedError("Forward and training with DAC not supported.")
def encode(self, x: torch.Tensor) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]:
codes = self.model.encode(x, self.n_quantizers)[1]
return codes, None
def decode(self, codes: torch.Tensor, scale: tp.Optional[torch.Tensor] = None):
assert scale is None
z_q = self.decode_latent(codes)
return self.model.decode(z_q)
def decode_latent(self, codes: torch.Tensor):
"""Decode from the discrete codes to continuous latent space."""
return self.model.quantizer.from_codes(codes)[0]
@property
def channels(self) -> int:
return 1
@property
def frame_rate(self) -> float:
return self.model.sample_rate / self.model.hop_length
@property
def sample_rate(self) -> int:
return self.model.sample_rate
@property
def cardinality(self) -> int:
return self.model.codebook_size
@property
def num_codebooks(self) -> int:
return self.n_quantizers
@property
def total_codebooks(self) -> int:
return self.model.n_codebooks
def set_num_codebooks(self, n: int):
"""Set the active number of codebooks used by the quantizer.
"""
assert n >= 1
assert n <= self.total_codebooks
self.n_quantizers = n
class HFEncodecCompressionModel(CompressionModel):
"""Wrapper around HuggingFace Encodec.
"""
def __init__(self, model: HFEncodecModel):
super().__init__()
self.model = model
bws = self.model.config.target_bandwidths
num_codebooks = [
bw * 1000 / (self.frame_rate * math.log2(self.cardinality))
for bw in bws
]
deltas = [nc - int(nc) for nc in num_codebooks]
# Checking we didn't do some bad maths and we indeed have integers!
assert all(deltas) <= 1e-3, deltas
self.possible_num_codebooks = [int(nc) for nc in num_codebooks]
self.set_num_codebooks(max(self.possible_num_codebooks))
def forward(self, x: torch.Tensor) -> qt.QuantizedResult:
# We don't support training with this.
raise NotImplementedError("Forward and training with HF EncodecModel not supported.")
def encode(self, x: torch.Tensor) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]:
bandwidth_index = self.possible_num_codebooks.index(self.num_codebooks)
bandwidth = self.model.config.target_bandwidths[bandwidth_index]
res = self.model.encode(x, None, bandwidth)
assert len(res[0]) == 1
assert len(res[1]) == 1
return res[0][0], res[1][0]
def decode(self, codes: torch.Tensor, scale: tp.Optional[torch.Tensor] = None):
if scale is None:
scales = [None] # type: ignore
else:
scales = scale # type: ignore
res = self.model.decode(codes[None], scales)
return res[0]
def decode_latent(self, codes: torch.Tensor):
"""Decode from the discrete codes to continuous latent space."""
return self.model.quantizer.decode(codes.transpose(0, 1))
@property
def channels(self) -> int:
return self.model.config.audio_channels
@property
def frame_rate(self) -> float:
hop_length = int(np.prod(self.model.config.upsampling_ratios))
return self.sample_rate / hop_length
@property
def sample_rate(self) -> int:
return self.model.config.sampling_rate
@property
def cardinality(self) -> int:
return self.model.config.codebook_size
@property
def num_codebooks(self) -> int:
return self._num_codebooks
@property
def total_codebooks(self) -> int:
return max(self.possible_num_codebooks)
def set_num_codebooks(self, n: int):
"""Set the active number of codebooks used by the quantizer.
"""
if n not in self.possible_num_codebooks:
raise ValueError(f"Allowed values for num codebooks: {self.possible_num_codebooks}")
self._num_codebooks = n
|