Spaces:
Running
on
A10G
Running
on
A10G
# @package __global__ | |
# WARNING: This is a base configuration file shared across ALL solvers in AudioCraft | |
# Please don't update this file directly. Instead use distinct configuration files | |
# to override the below configuration. | |
solver: ??? | |
fsdp: | |
use: false # should we use FSDP. | |
param_dtype: float16 # equivalent to autocast_dtype for FSDP. | |
reduce_dtype: float32 # gradient averaging dtype, float32 will give max stability. | |
buffer_dtype: float32 # dtype used for buffers, we don't have much buffers, so let's leave it. | |
sharding_strategy: shard_grad_op # can be shard_grad_op or full_shard. | |
# full_shard will use less memory but slower ?? | |
per_block: true # If True, uses nested FSDP. | |
profiler: | |
enabled: false | |
deadlock: | |
use: false | |
timeout: 600 | |
dataset: | |
batch_size: ??? | |
num_workers: 10 | |
segment_duration: null | |
num_samples: null | |
return_info: false | |
shuffle: false | |
sample_on_duration: true | |
sample_on_weight: true | |
min_segment_ratio: 0.5 | |
train: | |
num_samples: null | |
shuffle: true | |
shuffle_seed: 0 # if you want to sample the data differently. | |
permutation_on_files: false | |
valid: | |
num_samples: null | |
evaluate: | |
num_samples: null | |
generate: | |
num_samples: null | |
return_info: true | |
checkpoint: | |
save_last: true | |
save_every: null | |
keep_last: null | |
keep_every_states: null | |
generate: | |
every: null | |
path: 'samples' | |
audio: | |
format: 'mp3' | |
strategy: 'clip' | |
sample_rate: null | |
lm: | |
use_sampling: false | |
temp: 1.0 | |
top_k: 0 | |
top_p: 0.0 | |
evaluate: | |
every: null | |
num_workers: 5 | |
truncate_audio: null | |
fixed_generation_duration: null # in secs | |
metrics: | |
base: true # run default evaluation (e.g. like train/valid stage) | |
optim: | |
epochs: ??? | |
updates_per_epoch: null | |
lr: ??? | |
optimizer: ??? | |
adam: | |
betas: [0.9, 0.999] | |
weight_decay: 0. | |
ema: | |
use: false # whether to use EMA or not | |
updates: ${optim.updates_per_epoch} # frequency of updates of the EMA | |
device: cpu # device for EMA, can be put on GPU if more frequent updates | |
decay: 0.99 # EMA decay value, if null, no EMA is used | |
grad_accum_steps: 1 | |
schedule: | |
lr_scheduler: null | |
step: | |
step_size: null | |
gamma: null | |
exponential: | |
lr_decay: null | |
cosine: | |
warmup: null | |
lr_min_ratio: 0.0 | |
cycle_length: 1.0 | |
polynomial_decay: | |
warmup: null | |
zero_lr_warmup_steps: 0 | |
end_lr: 0.0 | |
power: 1 | |
inverse_sqrt: | |
warmup: null | |
warmup_init_lr: 0.0 | |
linear_warmup: | |
warmup: null | |
warmup_init_lr: 0.0 | |