Spaces:
Sleeping
Sleeping
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
""" | |
Main model for using MusicGen. This will combine all the required components | |
and provide easy access to the generation API. | |
""" | |
import typing as tp | |
import warnings | |
import torch | |
import numpy as np | |
from .encodec import CompressionModel | |
from .lm import LMModel | |
from .builders import get_debug_compression_model, get_debug_lm_model | |
from .loaders import load_compression_model, load_lm_model | |
from ..data.audio_utils import convert_audio, convert_txtchord2chroma, convert_txtchord2chroma_24 | |
from ..modules.conditioners import ConditioningAttributes, WavCondition, ChordCondition, BeatCondition | |
from ..utils.autocast import TorchAutocast | |
MelodyList = tp.List[tp.Optional[torch.Tensor]] | |
MelodyType = tp.Union[torch.Tensor, MelodyList] | |
# backward compatible names mapping | |
_HF_MODEL_CHECKPOINTS_MAP = { | |
"small": "facebook/musicgen-small", | |
"medium": "facebook/musicgen-medium", | |
"large": "facebook/musicgen-large", | |
"melody": "facebook/musicgen-melody", | |
} | |
class MusicGen: | |
"""MusicGen main model with convenient generation API. | |
Args: | |
name (str): name of the model. | |
compression_model (CompressionModel): Compression model | |
used to map audio to invertible discrete representations. | |
lm (LMModel): Language model over discrete representations. | |
max_duration (float, optional): maximum duration the model can produce, | |
otherwise, inferred from the training params. | |
""" | |
def __init__(self, name: str, compression_model: CompressionModel, lm: LMModel, | |
max_duration: tp.Optional[float] = None): | |
self.name = name | |
self.compression_model = compression_model | |
self.lm = lm | |
if max_duration is None: | |
if hasattr(lm, 'cfg'): | |
max_duration = lm.cfg.dataset.segment_duration # type: ignore | |
else: | |
raise ValueError("You must provide max_duration when building directly MusicGen") | |
assert max_duration is not None | |
self.max_duration: float = max_duration | |
self.device = next(iter(lm.parameters())).device | |
self.generation_params: dict = {} | |
self.set_generation_params(duration=6, extend_stride=3) # 6 seconds by default | |
self._progress_callback: tp.Optional[tp.Callable[[int, int], None]] = None | |
if self.device.type == 'cpu': | |
self.autocast = TorchAutocast(enabled=False) | |
else: | |
self.autocast = TorchAutocast( | |
enabled=True, device_type=self.device.type, dtype=torch.float16) | |
def frame_rate(self) -> float: | |
"""Roughly the number of AR steps per seconds.""" | |
return self.compression_model.frame_rate | |
def sample_rate(self) -> int: | |
"""Sample rate of the generated audio.""" | |
return self.compression_model.sample_rate | |
def audio_channels(self) -> int: | |
"""Audio channels of the generated audio.""" | |
return self.compression_model.channels | |
def get_pretrained(name: str = 'facebook/musicgen-melody', device=None): | |
"""Return pretrained model, we provide four models: | |
- facebook/musicgen-small (300M), text to music, | |
# see: https://huggingface.co/facebook/musicgen-small | |
- facebook/musicgen-medium (1.5B), text to music, | |
# see: https://huggingface.co/facebook/musicgen-medium | |
- facebook/musicgen-melody (1.5B) text to music and text+melody to music, | |
# see: https://huggingface.co/facebook/musicgen-melody | |
- facebook/musicgen-large (3.3B), text to music, | |
# see: https://huggingface.co/facebook/musicgen-large | |
""" | |
if device is None: | |
if torch.cuda.device_count(): | |
device = 'cuda' | |
else: | |
device = 'cpu' | |
if name == 'debug': | |
# used only for unit tests | |
compression_model = get_debug_compression_model(device) | |
lm = get_debug_lm_model(device) | |
return MusicGen(name, compression_model, lm, max_duration=30) | |
if name in _HF_MODEL_CHECKPOINTS_MAP: | |
warnings.warn( | |
"MusicGen pretrained model relying on deprecated checkpoint mapping. " + | |
f"Please use full pre-trained id instead: facebook/musicgen-{name}") | |
name = _HF_MODEL_CHECKPOINTS_MAP[name] | |
lm = load_lm_model(name, device=device) | |
compression_model = load_compression_model(name, device=device) | |
if 'self_wav' in lm.condition_provider.conditioners: | |
lm.condition_provider.conditioners['self_wav'].match_len_on_eval = True | |
return MusicGen(name, compression_model, lm) | |
def set_generation_params(self, use_sampling: bool = True, top_k: int = 250, | |
top_p: float = 0.0, temperature: float = 1.0, | |
duration: float = 30.0, cfg_coef: float = 3.0, | |
two_step_cfg: bool = False, extend_stride: float = 18): | |
"""Set the generation parameters for MusicGen. | |
Args: | |
use_sampling (bool, optional): Use sampling if True, else do argmax decoding. Defaults to True. | |
top_k (int, optional): top_k used for sampling. Defaults to 250. | |
top_p (float, optional): top_p used for sampling, when set to 0 top_k is used. Defaults to 0.0. | |
temperature (float, optional): Softmax temperature parameter. Defaults to 1.0. | |
duration (float, optional): Duration of the generated waveform. Defaults to 30.0. | |
cfg_coef (float, optional): Coefficient used for classifier free guidance. Defaults to 3.0. | |
two_step_cfg (bool, optional): If True, performs 2 forward for Classifier Free Guidance, | |
instead of batching together the two. This has some impact on how things | |
are padded but seems to have little impact in practice. | |
extend_stride: when doing extended generation (i.e. more than 30 seconds), by how much | |
should we extend the audio each time. Larger values will mean less context is | |
preserved, and shorter value will require extra computations. | |
""" | |
assert extend_stride < self.max_duration, "Cannot stride by more than max generation duration." | |
self.extend_stride = extend_stride | |
self.duration = duration | |
self.generation_params = { | |
'use_sampling': use_sampling, | |
'temp': temperature, | |
'top_k': top_k, | |
'top_p': top_p, | |
'cfg_coef': cfg_coef, | |
'two_step_cfg': two_step_cfg, | |
} | |
def set_custom_progress_callback(self, progress_callback: tp.Optional[tp.Callable[[int, int], None]] = None): | |
"""Override the default progress callback.""" | |
self._progress_callback = progress_callback | |
def generate_unconditional(self, num_samples: int, progress: bool = False, | |
return_tokens: bool = False) -> tp.Union[torch.Tensor, | |
tp.Tuple[torch.Tensor, torch.Tensor]]: | |
"""Generate samples in an unconditional manner. | |
Args: | |
num_samples (int): Number of samples to be generated. | |
progress (bool, optional): Flag to display progress of the generation process. Defaults to False. | |
""" | |
descriptions: tp.List[tp.Optional[str]] = [None] * num_samples | |
attributes, prompt_tokens = self._prepare_tokens_and_attributes(descriptions, None) | |
tokens = self._generate_tokens(attributes, prompt_tokens, progress) | |
if return_tokens: | |
return self.generate_audio(tokens), tokens | |
return self.generate_audio(tokens) | |
def generate(self, descriptions: tp.List[str], progress: bool = False, return_tokens: bool = False) \ | |
-> tp.Union[torch.Tensor, tp.Tuple[torch.Tensor, torch.Tensor]]: | |
"""Generate samples conditioned on text. | |
Args: | |
descriptions (list of str): A list of strings used as text conditioning. | |
progress (bool, optional): Flag to display progress of the generation process. Defaults to False. | |
""" | |
attributes, prompt_tokens = self._prepare_tokens_and_attributes(descriptions, None) | |
assert prompt_tokens is None | |
tokens = self._generate_tokens(attributes, prompt_tokens, progress) | |
if return_tokens: | |
return self.generate_audio(tokens), tokens | |
return self.generate_audio(tokens) | |
def generate_with_chroma(self, descriptions: tp.List[str], melody_wavs: MelodyType, | |
melody_sample_rate: int, progress: bool = False, | |
return_tokens: bool = False) -> tp.Union[torch.Tensor, | |
tp.Tuple[torch.Tensor, torch.Tensor]]: | |
"""Generate samples conditioned on text and melody. | |
Args: | |
descriptions (list of str): A list of strings used as text conditioning. | |
melody_wavs: (torch.Tensor or list of Tensor): A batch of waveforms used as | |
melody conditioning. Should have shape [B, C, T] with B matching the description length, | |
C=1 or 2. It can be [C, T] if there is a single description. It can also be | |
a list of [C, T] tensors. | |
melody_sample_rate: (int): Sample rate of the melody waveforms. | |
progress (bool, optional): Flag to display progress of the generation process. Defaults to False. | |
""" | |
if isinstance(melody_wavs, torch.Tensor): | |
if melody_wavs.dim() == 2: | |
melody_wavs = melody_wavs[None] | |
if melody_wavs.dim() != 3: | |
raise ValueError("Melody wavs should have a shape [B, C, T].") | |
melody_wavs = list(melody_wavs) | |
else: | |
for melody in melody_wavs: | |
if melody is not None: | |
assert melody.dim() == 2, "One melody in the list has the wrong number of dims." | |
melody_wavs = [ | |
convert_audio(wav, melody_sample_rate, self.sample_rate, self.audio_channels) | |
if wav is not None else None | |
for wav in melody_wavs] | |
attributes, prompt_tokens = self._prepare_tokens_and_attributes(descriptions=descriptions, prompt=None, | |
melody_wavs=melody_wavs) | |
assert prompt_tokens is None | |
tokens = self._generate_tokens(attributes, prompt_tokens, progress) | |
if return_tokens: | |
return self.generate_audio(tokens), tokens | |
return self.generate_audio(tokens) | |
def generate_with_chords(self, descriptions: tp.List[str], melody_chords: tp.Optional[tp.Union[MelodyList,tp.List[str]]] = None, | |
bpms: tp.Optional[tp.Union[float,int,tp.List[float],tp.List[int]]] = [120.], | |
meters: tp.Optional[tp.Union[float,int,tp.List[float],tp.List[int]]] = [4.], | |
progress: bool = False, return_tokens: bool = False) -> tp.Union[torch.Tensor, | |
tp.Tuple[torch.Tensor, torch.Tensor]]: | |
"""Generate samples conditioned on text and melody. | |
Args: | |
descriptions (list of str): A list of strings used as text conditioning. | |
melody_chords: (torch.Tensor or list of Tensor): A list of chords in chormagram or string type | |
progress (bool, optional): Flag to display progress of the generation process. Defaults to False. | |
""" | |
if isinstance(melody_chords[0], str): | |
# check the bpm, meter length | |
if len(bpms) == 1: | |
bpms *= len(melody_chords) | |
if len(meters) == 1: | |
meters *= len(melody_chords) | |
assert len(bpms) == len(melody_chords), "bpm length is not equal to chord length" | |
assert len(meters) == len(melody_chords), "meter length is not equal to chord length" | |
# convert str to chromagram | |
melody_chromas = [] | |
for melody_chord, bpm, meter in zip(melody_chords, bpms, meters): | |
melody_chroma = convert_txtchord2chroma(melody_chord, bpm, meter, self.duration).permute(1,0) # [C=12, T] | |
melody_chromas.append(melody_chroma) | |
melody_chromas = torch.stack(melody_chromas, dim=0) | |
assert melody_chromas.dim() == 3 | |
melody_chords = list(melody_chromas) | |
else: | |
for melody in melody_chords: | |
if melody is not None: | |
assert melody.dim() == 2, "One melody in the list has the wrong number of dims." | |
attributes, prompt_tokens = self._prepare_tokens_and_attributes(descriptions=descriptions, prompt=None, | |
melody_chords=melody_chords, bpms=bpms) | |
assert prompt_tokens is None | |
tokens = self._generate_tokens(attributes, prompt_tokens, progress) | |
if return_tokens: | |
return self.generate_audio(tokens), tokens | |
return self.generate_audio(tokens) | |
def generate_with_chords_and_beats(self, descriptions: tp.List[str], melody_chords: tp.Optional[tp.Union[MelodyList,tp.List[str]]] = None, | |
bpms: tp.Optional[tp.Union[float,int,tp.List[float],tp.List[int]]] = [120.], | |
meters: tp.Optional[tp.Union[float,int,tp.List[float],tp.List[int]]] = [4.], | |
progress: bool = False, return_tokens: bool = False) -> tp.Union[torch.Tensor, | |
tp.Tuple[torch.Tensor, torch.Tensor]]: | |
"""Generate samples conditioned on text and melody. | |
Args: | |
descriptions (list of str): A list of strings used as text conditioning. | |
melody_chords: (torch.Tensor or list of Tensor): A list of chords in chormagram or string type | |
progress (bool, optional): Flag to display progress of the generation process. Defaults to False. | |
""" | |
if isinstance(melody_chords[0], str): | |
# check the bpm, meter length | |
if len(bpms) == 1: | |
bpms *= len(melody_chords) | |
if len(meters) == 1: | |
meters *= len(melody_chords) | |
assert len(bpms) == len(melody_chords), "bpm length is not equal to chord length" | |
assert len(meters) == len(melody_chords), "meter length is not equal to chord length" | |
# convert str to chromagram | |
melody_chromas = [] | |
for melody_chord, bpm, meter in zip(melody_chords, bpms, meters): | |
melody_chroma = convert_txtchord2chroma(melody_chord, bpm, meter, self.duration).permute(1,0) # [C=24, T] | |
melody_chromas.append(melody_chroma) | |
melody_chromas = torch.stack(melody_chromas, dim=0) | |
assert melody_chromas.dim() == 3 | |
melody_chords = list(melody_chromas) | |
else: | |
for melody in melody_chords: | |
if melody is not None: | |
assert melody.dim() == 2, "One melody in the list has the wrong number of dims." | |
fs = self.sample_rate / 640 | |
beats = [] | |
for bpm, meter in zip(bpms, meters): | |
beat = np.zeros(int(fs * self.duration)) | |
beat_gap = int(60 / bpm * fs) | |
beat[::beat_gap] = 1 | |
bar = np.zeros(int(fs * self.duration)) | |
bar[::beat_gap * meter] = 1 | |
kernel = np.array([0.05, 0.1, 0.3, 0.9, 0.3, 0.1, 0.05]) | |
beat = np.convolve(beat , kernel, 'same') | |
beat = beat + bar | |
beats.append(torch.tensor(beat).unsqueeze(0)) # [C, T] | |
beats = list(torch.stack(beats, dim=0)) # [B, C, T] | |
attributes, prompt_tokens = self._prepare_tokens_and_attributes(descriptions=descriptions, prompt=None, | |
melody_chords=melody_chords, beats=beats, bpms=bpms) | |
assert prompt_tokens is None | |
tokens = self._generate_tokens(attributes, prompt_tokens, progress) | |
if return_tokens: | |
return self.generate_audio(tokens), tokens | |
return self.generate_audio(tokens) | |
def generate_for_eval(self, descriptions: tp.List[str], melody_chords: tp.List[torch.Tensor], beats: tp.List[torch.Tensor], | |
bpms: tp.List[float], progress: bool = False, return_tokens: bool = False) -> tp.Union[torch.Tensor, | |
tp.Tuple[torch.Tensor, torch.Tensor]]: | |
# assert melody_chords.dim() == 3 | |
# assert beats.dim() == 3 | |
attributes, prompt_tokens = self._prepare_tokens_and_attributes(descriptions=descriptions, prompt=None, | |
melody_chords=melody_chords, beats=beats, bpms=bpms) | |
assert prompt_tokens is None | |
tokens = self._generate_tokens(attributes, prompt_tokens, progress) | |
if return_tokens: | |
return self.generate_audio(tokens), tokens | |
return self.generate_audio(tokens) | |
def generate_continuation(self, prompt: torch.Tensor, prompt_sample_rate: int, | |
descriptions: tp.Optional[tp.List[tp.Optional[str]]] = None, audio_channels=1, | |
progress: bool = False, return_tokens: bool = False) \ | |
-> tp.Union[torch.Tensor, tp.Tuple[torch.Tensor, torch.Tensor]]: | |
"""Generate samples conditioned on audio prompts. | |
Args: | |
prompt (torch.Tensor): A batch of waveforms used for continuation. | |
Prompt should be [B, C, T], or [C, T] if only one sample is generated. | |
prompt_sample_rate (int): Sampling rate of the given audio waveforms. | |
descriptions (list of str, optional): A list of strings used as text conditioning. Defaults to None. | |
progress (bool, optional): Flag to display progress of the generation process. Defaults to False. | |
""" | |
if prompt.dim() == 2: | |
prompt = prompt[None] | |
if prompt.dim() != 3: | |
raise ValueError("prompt should have 3 dimensions: [B, C, T] (C = 1).") | |
prompt = convert_audio(prompt, prompt_sample_rate, self.sample_rate, audio_channels) | |
if descriptions is None: | |
descriptions = [None] * len(prompt) | |
attributes, prompt_tokens = self._prepare_tokens_and_attributes(descriptions, prompt) | |
assert prompt_tokens is not None | |
tokens = self._generate_tokens(attributes, prompt_tokens, progress) | |
if return_tokens: | |
return self.generate_audio(tokens), tokens | |
return self.generate_audio(tokens) | |
def _prepare_tokens_and_attributes( | |
self, | |
descriptions: tp.Sequence[tp.Optional[str]], | |
prompt: tp.Optional[torch.Tensor], | |
melody_wavs: tp.Optional[MelodyList] = None, | |
melody_chords: tp.Optional[MelodyList] = None, | |
beats : tp.Optional[MelodyList] = None, | |
bpms : tp.Optional[list] = None, | |
) -> tp.Tuple[tp.List[ConditioningAttributes], tp.Optional[torch.Tensor]]: | |
"""Prepare model inputs. | |
Args: | |
descriptions (list of str): A list of strings used as text conditioning. | |
prompt (torch.Tensor): A batch of waveforms used for continuation. | |
melody_wavs (torch.Tensor, optional): A batch of waveforms | |
used as melody conditioning. Defaults to None. | |
""" | |
attributes = [ | |
ConditioningAttributes(text={'description': description}) | |
for description in descriptions] | |
if melody_wavs is None: | |
for attr in attributes: | |
attr.wav['self_wav'] = WavCondition( | |
torch.zeros((1, 1, 1), device=self.device), | |
torch.tensor([0], device=self.device), | |
sample_rate=[self.sample_rate], | |
path=[None]) | |
else: | |
if 'self_wav' not in self.lm.condition_provider.conditioners: | |
raise RuntimeError("This model doesn't support melody conditioning. " | |
"Use the `melody` model.") | |
assert len(melody_wavs) == len(descriptions), \ | |
f"number of melody wavs must match number of descriptions! " \ | |
f"got melody len={len(melody_wavs)}, and descriptions len={len(descriptions)}" | |
for attr, melody in zip(attributes, melody_wavs): | |
if melody is None: | |
attr.wav['self_wav'] = WavCondition( | |
torch.zeros((1, 1, 1), device=self.device), | |
torch.tensor([0], device=self.device), | |
sample_rate=[self.sample_rate], | |
path=[None]) | |
else: | |
attr.wav['self_wav'] = WavCondition( | |
melody[None].to(device=self.device), | |
torch.tensor([melody.shape[-1]], device=self.device), | |
sample_rate=[self.sample_rate], | |
path=[None], | |
) | |
if melody_chords is None: | |
for attr in attributes: | |
attr.chord['chord'] = ChordCondition( | |
torch.zeros((1, 12, 1), device=self.device), | |
torch.tensor([0], device=self.device), | |
bpm=[None], | |
path=[None]) | |
else: | |
# if 'chord' not in self.lm.condition_provider.conditioners: | |
# raise RuntimeError("This model doesn't support chord conditioning. " | |
# "Use the `chord` model.") | |
assert len(melody_chords) == len(descriptions), \ | |
f"number of melody_chords must match number of descriptions! " \ | |
f"got melody len={len(melody_chords)}, and descriptions len={len(descriptions)}" | |
for attr, chord, bpm in zip(attributes, melody_chords, bpms): | |
if chord is None: | |
attr.chord['chord'] = ChordCondition( | |
torch.zeros((1, 1, 1), device=self.device), | |
torch.tensor([0], device=self.device), | |
bpm=[None], | |
path=[None]) | |
else: | |
attr.chord['chord'] = ChordCondition( | |
chord[None].to(device=self.device), | |
torch.tensor([chord.shape[-1]], device=self.device), | |
bpm=[bpm], | |
path=[None], | |
) | |
if beats is None: | |
for attr in attributes: | |
attr.beat['beat'] = BeatCondition( | |
torch.zeros((1, 1, 1), device=self.device), | |
torch.tensor([0], device=self.device), | |
bpm=[None], | |
path=[None]) | |
else: | |
# if 'beat' not in self.lm.condition_provider.conditioners: | |
# raise RuntimeError("This model doesn't support beat conditioning. " | |
# "Use the `beat` model.") | |
assert len(beats) == len(descriptions), \ | |
f"number of beats must match number of descriptions! " \ | |
f"got melody len={len(beats)}, and descriptions len={len(descriptions)}" | |
for attr, beat, bpm in zip(attributes, beats, bpms): | |
if beat is None: | |
attr.beat['beat'] = BeatCondition( | |
torch.zeros((1, 1, 1), device=self.device), | |
torch.tensor([0], device=self.device), | |
bpm=[None], | |
path=[None]) | |
else: | |
attr.beat['beat'] = BeatCondition( | |
beat[None].to(device=self.device), | |
torch.tensor([beat.shape[-1]], device=self.device), | |
bpm=[bpm], | |
path=[None], | |
) | |
if prompt is not None: | |
if descriptions is not None: | |
assert len(descriptions) == len(prompt), "Prompt and nb. descriptions doesn't match" | |
prompt = prompt.to(self.device) | |
prompt_tokens, scale = self.compression_model.encode(prompt) | |
assert scale is None | |
else: | |
prompt_tokens = None | |
return attributes, prompt_tokens | |
def _generate_tokens(self, attributes: tp.List[ConditioningAttributes], | |
prompt_tokens: tp.Optional[torch.Tensor], progress: bool = False) -> torch.Tensor: | |
"""Generate discrete audio tokens given audio prompt and/or conditions. | |
Args: | |
attributes (list of ConditioningAttributes): Conditions used for generation (text/melody). | |
prompt_tokens (torch.Tensor, optional): Audio prompt used for continuation. | |
progress (bool, optional): Flag to display progress of the generation process. Defaults to False. | |
Returns: | |
torch.Tensor: Generated audio, of shape [B, C, T], T is defined by the generation params. | |
""" | |
total_gen_len = int(self.duration * self.frame_rate) | |
max_prompt_len = int(min(self.duration, self.max_duration) * self.frame_rate) | |
current_gen_offset: int = 0 | |
def _progress_callback(generated_tokens: int, tokens_to_generate: int): | |
generated_tokens += current_gen_offset | |
if self._progress_callback is not None: | |
# Note that total_gen_len might be quite wrong depending on the | |
# codebook pattern used, but with delay it is almost accurate. | |
self._progress_callback(generated_tokens, total_gen_len) | |
else: | |
print(f'{generated_tokens: 6d} / {total_gen_len: 6d}', end='\r') | |
if prompt_tokens is not None: | |
assert max_prompt_len >= prompt_tokens.shape[-1], \ | |
"Prompt is longer than audio to generate" | |
callback = None | |
if progress: | |
callback = _progress_callback | |
if self.duration <= self.max_duration: | |
# generate by sampling from LM, simple case. | |
with self.autocast: | |
gen_tokens = self.lm.generate( | |
prompt_tokens, attributes, | |
callback=callback, max_gen_len=total_gen_len, **self.generation_params) | |
else: | |
# now this gets a bit messier, we need to handle prompts, | |
# melody conditioning etc. | |
ref_wavs = [attr.wav['self_wav'] for attr in attributes] | |
all_tokens = [] | |
if prompt_tokens is None: | |
prompt_length = 0 | |
else: | |
all_tokens.append(prompt_tokens) | |
prompt_length = prompt_tokens.shape[-1] | |
stride_tokens = int(self.frame_rate * self.extend_stride) | |
while current_gen_offset + prompt_length < total_gen_len: | |
time_offset = current_gen_offset / self.frame_rate | |
chunk_duration = min(self.duration - time_offset, self.max_duration) | |
max_gen_len = int(chunk_duration * self.frame_rate) | |
for attr, ref_wav in zip(attributes, ref_wavs): | |
wav_length = ref_wav.length.item() | |
if wav_length == 0: | |
continue | |
# We will extend the wav periodically if it not long enough. | |
# we have to do it here rather than in conditioners.py as otherwise | |
# we wouldn't have the full wav. | |
initial_position = int(time_offset * self.sample_rate) | |
wav_target_length = int(self.max_duration * self.sample_rate) | |
positions = torch.arange(initial_position, | |
initial_position + wav_target_length, device=self.device) | |
attr.wav['self_wav'] = WavCondition( | |
ref_wav[0][..., positions % wav_length], | |
torch.full_like(ref_wav[1], wav_target_length), | |
[self.sample_rate] * ref_wav[0].size(0), | |
[None], [0.]) | |
with self.autocast: | |
gen_tokens = self.lm.generate( | |
prompt_tokens, attributes, | |
callback=callback, max_gen_len=max_gen_len, **self.generation_params) | |
if prompt_tokens is None: | |
all_tokens.append(gen_tokens) | |
else: | |
all_tokens.append(gen_tokens[:, :, prompt_tokens.shape[-1]:]) | |
prompt_tokens = gen_tokens[:, :, stride_tokens:] | |
prompt_length = prompt_tokens.shape[-1] | |
current_gen_offset += stride_tokens | |
gen_tokens = torch.cat(all_tokens, dim=-1) | |
return gen_tokens | |
def generate_audio(self, gen_tokens: torch.Tensor): | |
"""Generate Audio from tokens""" | |
assert gen_tokens.dim() == 3 | |
with torch.no_grad(): | |
n_channel = gen_tokens.shape[1] | |
gen_audio = self.compression_model.decode(gen_tokens, None) | |
return gen_audio | |