# @package __global__ # This is the training loop solver # for the base MusicGen model (text-to-music) defaults: - musicgen/default - /model: lm/musicgen_lm - override /dset: audio/train_backing - _self_ autocast: true autocast_dtype: float16 # EnCodec large trained on mono-channel music audio sampled at 32khz # with a total stride of 640 leading to 50 frames/s. # rvq.n_q=4, rvq.bins=2048, no quantization dropout # (transformer_lm card and n_q must be compatible) compression_model_checkpoint: //pretrained/facebook/encodec_32khz channels: 1 sample_rate: 32000 deadlock: use: true # deadlock detection dataset: batch_size: 8 # 1 GPU(A100) num_workers: 8 segment_duration: 30 sample_on_weight: false # Uniform sampling all the way sample_on_duration: false # Uniform sampling all the way valid: num_samples: 4 generate: lm: use_sampling: true top_k: 250 top_p: 0.0 checkpoint: save_last: true save_every: 25 keep_every_states: null optim: epochs: 1 updates_per_epoch: 1 optimizer: dadam lr: 1e-32 max_norm: 1.0 ema: use: false updates: 10 device: cuda logging: log_tensorboard: false schedule: lr_scheduler: cosine cosine: warmup: 0 lr_min_ratio: 0.0 cycle_length: 1.0