import gradio as gr import os hf_token = os.environ.get('HF_TOKEN') lpmc_client = gr.load("seungheondoh/LP-Music-Caps-demo", src="spaces") from gradio_client import Client client = Client("https://fffiloni-test-llama-api.hf.space/", hf_token=hf_token) from diffusers import DiffusionPipeline import torch pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, use_safetensors=True, variant="fp16") pipe.to("cuda") #pipe.enable_model_cpu_offload() # if using torch < 2.0 # pipe.enable_xformers_memory_efficient_attention() from pydub import AudioSegment def cut_audio(input_path, output_path, max_duration=30000): audio = AudioSegment.from_file(input_path) if len(audio) > max_duration: audio = audio[:max_duration] audio.export(output_path, format="mp3") return output_path def solo_xd(prompt): images = pipe(prompt=prompt).images[0] return images def infer(audio_file): truncated_audio = cut_audio(audio_file, "trunc_audio.mp3") cap_result = lpmc_client( truncated_audio, # str (filepath or URL to file) in 'audio_path' Audio component api_name="predict" ) print(cap_result) #summarize_q = f""" #I'll give you a list of music descriptions. Create a summary reflecting the musical ambiance. #Do not processs each segment, but provide a summary for the whole instead. #Here's the list: #{cap_result} #""" #summary_result = client.predict( # summarize_q, # str in 'Message' Textbox component # api_name="/chat_1" #) #print(f"SUMMARY: {summary_result}") llama_q = f""" I'll give you a music description, from i want you to provide an illustrative image description that would fit well with the music. Do not processs each segment or song, but provide a summary for the whole instead. Answer with only one image description. Never do lists. Maximum 77 tokens. Here's the music description : {cap_result} """ result = client.predict( llama_q, # str in 'Message' Textbox component api_name="/predict" ) print(f"Llama2 result: {result}") images = pipe(prompt=result).images[0] print("Finished") #return cap_result, result, images return images, result, gr.update(visible=True) css = """ #col-container {max-width: 510px; margin-left: auto; margin-right: auto;} """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.HTML("""

Music To Image

Sends an audio into LP-Music-Caps to generate a audio caption which is then translated to an illustrative image description with Llama2, and finally run through Stable Diffusion XL to generate an image from the audio !

Note: Only the first 30 seconds of your audio will be used for inference.

""") audio_input = gr.Audio(label="Music input", type="filepath", source="upload") infer_btn = gr.Button("Generate Image from Music") #lpmc_cap = gr.Textbox(label="Lp Music Caps caption") llama_trans_cap = gr.Textbox(label="Llama translation", visible=False) img_result = gr.Image(label="Image Result") tryagain_btn = gr.Button("Try again ?", visible=False) #infer_btn.click(fn=infer, inputs=[audio_input], outputs=[lpmc_cap, llama_trans_cap, img_result]) infer_btn.click(fn=infer, inputs=[audio_input], outputs=[img_result, llama_trans_cap, tryagain_btn]) tryagain_btn.click(fn=solo_xd, inputs=[llama_trans_cap], outputs=[img_result]) demo.queue(max_size=20).launch()