Spaces:
Paused
Paused
# Copyright (2023) Tsinghua University, Bytedance Ltd. and/or its affiliates | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gradio as gr | |
import spaces | |
import argparse | |
from model import SALMONN | |
class ff: | |
def generate(self, wav_path, prompt, prompt_pattern, num_beams, temperature, top_p): | |
print(f'wav_path: {wav_path}, prompt: {prompt}, temperature: {temperature}, num_beams: {num_beams}, top_p: {top_p}') | |
return "I'm sorry, but I cannot answer that question as it is not clear what you are asking. Can you please provide more context or clarify your question?" | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--device", type=str, default="cuda:0") | |
parser.add_argument("--ckpt_path", type=str, default="./salmonn_7b_v0.pth") | |
parser.add_argument("--whisper_path", type=str, default="./whisper_large_v2") | |
parser.add_argument("--beats_path", type=str, default="./beats/BEATs_iter3_plus_AS2M_finetuned_on_AS2M_cpt2.pt") | |
parser.add_argument("--vicuna_path", type=str, default="./vicuna-7b-v1.5") | |
parser.add_argument("--low_resource", action='store_true', default=False) | |
parser.add_argument("--port", default=9527) | |
args = parser.parse_args() | |
args.low_resource = True # for huggingface A10 7b demo | |
# model = ff() | |
model = SALMONN( | |
ckpt=args.ckpt_path, | |
whisper_path=args.whisper_path, | |
beats_path=args.beats_path, | |
vicuna_path=args.vicuna_path, | |
low_resource=args.low_resource, | |
lora_alpha=28, | |
) | |
model.to(args.device) | |
model.eval() | |
def gradio_answer(speech, text_input, num_beams, temperature, top_p): | |
llm_message = model.generate( | |
wav_path=speech, | |
prompt=text_input, | |
num_beams=num_beams, | |
temperature=temperature, | |
top_p=top_p, | |
) | |
return llm_message[0] | |
title = """<h1 style="text-align: center;">SALMONN: Speech Audio Language Music Open Neural Network</h1>""" | |
image_src = """<h1 align="center"><a href="https://github.com/bytedance/SALMONN"><img src="https://raw.githubusercontent.com/bytedance/SALMONN/main/resource/salmon.png", alt="SALMONN" border="0" style="margin: 0 auto; height: 200px;" /></a> </h1>""" | |
description = """<h3 style="text-align: center;">This is a simplified gradio demo for <a href="https://huggingface.co/tsinghua-ee/SALMONN-7B" target="_blank">SALMONN-7B</a>. <br />To experience SALMONN-13B, you can go to <a href="https://bytedance.github.io/SALMONN">https://bytedance.github.io/SALMONN</a>.<br /> Upload your audio and ask a question!</h3>""" | |
css = """ | |
div#col-container { | |
margin: 0 auto; | |
max-width: 840px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.HTML(title) | |
#gr.Markdown(image_src) | |
gr.HTML(description) | |
with gr.Row(): | |
with gr.Column(): | |
speech = gr.Audio(label="Audio", type='filepath') | |
with gr.Row(): | |
text_input = gr.Textbox(label='User question', placeholder='Please upload your audio first', interactive=True) | |
submit_btn = gr.Button("Submit") | |
answer = gr.Textbox(label="Salmonn answer") | |
with gr.Accordion("Advanced Settings", open=False): | |
num_beams = gr.Slider( | |
minimum=1, | |
maximum=10, | |
value=4, | |
step=1, | |
interactive=True, | |
label="beam search numbers", | |
) | |
top_p = gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.9, | |
step=0.1, | |
interactive=True, | |
label="top p", | |
) | |
temperature = gr.Slider( | |
minimum=0.8, | |
maximum=2.0, | |
value=1.0, | |
step=0.1, | |
interactive=False, | |
label="temperature", | |
) | |
with gr.Row(): | |
examples = gr.Examples( | |
examples = [ | |
["resource/audio_demo/gunshots.wav", "Recognize the speech and give me the transcription."], | |
["resource/audio_demo/gunshots.wav", "Listen to the speech and translate it into German."], | |
["resource/audio_demo/gunshots.wav", "Provide the phonetic transcription for the speech."], | |
["resource/audio_demo/gunshots.wav", "Please describe the audio."], | |
["resource/audio_demo/gunshots.wav", "Recognize what the speaker says and describe the background audio at the same time."], | |
["resource/audio_demo/gunshots.wav", "Use your strong reasoning skills to answer the speaker's question in detail based on the background sound."], | |
["resource/audio_demo/duck.wav", "Please list each event in the audio in order."], | |
["resource/audio_demo/duck.wav", "Based on the audio, write a story in detail. Your story should be highly related to the audio."], | |
["resource/audio_demo/duck.wav", "How many speakers did you hear in this audio? Who are they?"], | |
["resource/audio_demo/excitement.wav", "Describe the emotion of the speaker."], | |
["resource/audio_demo/mountain.wav", "Please answer the question in detail."], | |
["resource/audio_demo/jobs.wav", "Give me only three keywords of the text. Explain your reason."], | |
["resource/audio_demo/2_30.wav", "What is the time mentioned in the speech?"], | |
["resource/audio_demo/music.wav", "Please describe the music in detail."], | |
["resource/audio_demo/music.wav", "What is the emotion of the music? Explain the reason in detail."], | |
["resource/audio_demo/music.wav", "Can you write some lyrics of the song?"], | |
["resource/audio_demo/music.wav", "Give me a title of the music based on its rhythm and emotion."] | |
], | |
inputs=[speech, text_input] | |
) | |
text_input.submit( | |
gradio_answer, [speech, text_input, num_beams, temperature, top_p], [answer] | |
) | |
submit_btn.click( | |
gradio_answer, [speech, text_input, num_beams, temperature, top_p], [answer] | |
) | |
# demo.launch(share=True, enable_queue=True, server_port=int(args.port)) | |
demo.queue(max_size=20).launch(share=False) |