import gradio as gr import spaces import torch from diffusers import AutoencoderKL, TCDScheduler from diffusers.models.model_loading_utils import load_state_dict from gradio_imageslider import ImageSlider from huggingface_hub import hf_hub_download from controlnet_union import ControlNetModel_Union from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline from PIL import Image, ImageDraw import numpy as np MODELS = { "RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning", } config_file = hf_hub_download( "xinsir/controlnet-union-sdxl-1.0", filename="config_promax.json", ) config = ControlNetModel_Union.load_config(config_file) controlnet_model = ControlNetModel_Union.from_config(config) model_file = hf_hub_download( "xinsir/controlnet-union-sdxl-1.0", filename="diffusion_pytorch_model_promax.safetensors", ) state_dict = load_state_dict(model_file) model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model( controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0" ) model.to(device="cuda", dtype=torch.float16) vae = AutoencoderKL.from_pretrained( "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16 ).to("cuda") pipe = StableDiffusionXLFillPipeline.from_pretrained( "SG161222/RealVisXL_V5.0_Lightning", torch_dtype=torch.float16, vae=vae, controlnet=model, variant="fp16", ).to("cuda") pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config) prompt = "high quality" ( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) = pipe.encode_prompt(prompt, "cuda", True) """ def fill_image(image, model_selection): margin = 256 overlap = 24 # Open the original image source = image # Changed from image["background"] to match new input format # Calculate new output size output_size = (source.width + 2*margin, source.height + 2*margin) # Create a white background background = Image.new('RGB', output_size, (255, 255, 255)) # Calculate position to paste the original image position = (margin, margin) # Paste the original image onto the white background background.paste(source, position) # Create the mask mask = Image.new('L', output_size, 255) # Start with all white mask_draw = ImageDraw.Draw(mask) mask_draw.rectangle([ (position[0] + overlap, position[1] + overlap), (position[0] + source.width - overlap, position[1] + source.height - overlap) ], fill=0) # Prepare the image for ControlNet cnet_image = background.copy() cnet_image.paste(0, (0, 0), mask) for image in pipe( prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, image=cnet_image, ): yield image, cnet_image image = image.convert("RGBA") cnet_image.paste(image, (0, 0), mask) yield background, cnet_image """ @spaces.GPU def fill_image(image, model_selection): source = image target_ratio=(9, 16) target_height=1280 overlap=48 fade_width=24 # Calculate target dimensions target_width = (target_height * target_ratio[0]) // target_ratio[1] # Resize the source image to fit within the target dimensions while maintaining aspect ratio source_aspect = source.width / source.height target_aspect = target_width / target_height if source_aspect > target_aspect: # Image is wider than target ratio, fit to width new_width = target_width new_height = int(new_width / source_aspect) else: # Image is taller than target ratio, fit to height new_height = target_height new_width = int(new_height * source_aspect) resized_source = source.resize((new_width, new_height), Image.LANCZOS) # Calculate margins margin_x = (target_width - new_width) // 2 margin_y = (target_height - new_height) // 2 # Create a white background background = Image.new('RGB', (target_width, target_height), (255, 255, 255)) # Paste the resized image onto the white background position = (margin_x, margin_y) background.paste(resized_source, position) # Create the mask with gradient edges mask = Image.new('L', (target_width, target_height), 255) mask_array = np.array(mask) # Create gradient for left and right edges for i in range(fade_width): alpha = i / fade_width mask_array[:, margin_x+overlap+i] = np.minimum(mask_array[:, margin_x+overlap+i], int(255 * (1 - alpha))) mask_array[:, margin_x+new_width-overlap-i-1] = np.minimum(mask_array[:, margin_x+new_width-overlap-i-1], int(255 * (1 - alpha))) # Create gradient for top and bottom edges for i in range(fade_width): alpha = i / fade_width mask_array[margin_y+overlap+i, :] = np.minimum(mask_array[margin_y+overlap+i, :], int(255 * (1 - alpha))) mask_array[margin_y+new_height-overlap-i-1, :] = np.minimum(mask_array[margin_y+new_height-overlap-i-1, :], int(255 * (1 - alpha))) # Set the center to black mask_array[margin_y+overlap+fade_width:margin_y+new_height-overlap-fade_width, margin_x+overlap+fade_width:margin_x+new_width-overlap-fade_width] = 0 mask = Image.fromarray(mask_array.astype('uint8'), 'L') # Prepare the image for ControlNet cnet_image = background.copy() cnet_image.paste(0, (0, 0), mask) for image in pipe( prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, image=cnet_image, ): yield image, cnet_image image = image.convert("RGBA") cnet_image.paste(image, (0, 0), mask) yield background, cnet_image def clear_result(): return gr.update(value=None) css = """ .gradio-container { width: 1024px !important; } """ title = """