Spaces:
Running
on
A10G
Running
on
A10G
Update app.py
Browse files
app.py
CHANGED
@@ -35,6 +35,9 @@ pipe.to("cuda")
|
|
35 |
#pipe.enable_model_cpu_offload()
|
36 |
|
37 |
def infer(use_custom_model, model_name, custom_lora_weight, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, steps, seed, progress=gr.Progress(track_tqdm=True)):
|
|
|
|
|
|
|
38 |
|
39 |
if preprocessor == "canny":
|
40 |
|
@@ -52,11 +55,6 @@ def infer(use_custom_model, model_name, custom_lora_weight, image_in, prompt, ne
|
|
52 |
# This is where you load your trained weights
|
53 |
pipe.load_lora_weights(custom_model, use_auth_token=True)
|
54 |
|
55 |
-
prompt = prompt
|
56 |
-
negative_prompt = negative_prompt
|
57 |
-
generator = torch.Generator(device="cuda").manual_seed(seed)
|
58 |
-
|
59 |
-
if use_custom_model:
|
60 |
lora_scale=custom_lora_weight
|
61 |
|
62 |
images = pipe(
|
@@ -123,4 +121,4 @@ with gr.Blocks(css=css) as demo:
|
|
123 |
outputs = [result]
|
124 |
)
|
125 |
|
126 |
-
demo.queue().launch()
|
|
|
35 |
#pipe.enable_model_cpu_offload()
|
36 |
|
37 |
def infer(use_custom_model, model_name, custom_lora_weight, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, steps, seed, progress=gr.Progress(track_tqdm=True)):
|
38 |
+
prompt = prompt
|
39 |
+
negative_prompt = negative_prompt
|
40 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
41 |
|
42 |
if preprocessor == "canny":
|
43 |
|
|
|
55 |
# This is where you load your trained weights
|
56 |
pipe.load_lora_weights(custom_model, use_auth_token=True)
|
57 |
|
|
|
|
|
|
|
|
|
|
|
58 |
lora_scale=custom_lora_weight
|
59 |
|
60 |
images = pipe(
|
|
|
121 |
outputs = [result]
|
122 |
)
|
123 |
|
124 |
+
demo.queue(max_size=12).launch()
|