Spaces:
Running
on
A10G
Running
on
A10G
Update app.py
Browse files
app.py
CHANGED
@@ -12,69 +12,84 @@ import torch
|
|
12 |
import numpy as np
|
13 |
import cv2
|
14 |
|
15 |
-
|
16 |
-
controlnet = ControlNetModel.from_pretrained(
|
17 |
-
"diffusers/controlnet-canny-sdxl-1.0",
|
18 |
-
torch_dtype=torch.float16
|
19 |
-
)
|
20 |
#vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
21 |
-
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
22 |
-
"stabilityai/stable-diffusion-xl-base-1.0",
|
23 |
-
controlnet=controlnet,
|
24 |
-
#vae=vae,
|
25 |
-
torch_dtype=torch.float16,
|
26 |
-
variant="fp16",
|
27 |
-
use_safetensors=True
|
28 |
-
)
|
29 |
-
pipe.to("cuda")
|
30 |
|
31 |
generator = torch.Generator(device="cuda")
|
32 |
|
33 |
#pipe.enable_model_cpu_offload()
|
34 |
|
35 |
-
def infer(model_name, image_in, prompt, controlnet_conditioning_scale, guidance_scale, seed):
|
36 |
-
|
|
|
37 |
|
38 |
-
|
39 |
-
|
40 |
|
41 |
prompt = prompt
|
42 |
negative_prompt = "extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured"
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
image=
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
).images
|
68 |
|
69 |
-
images[0].save(f"
|
70 |
|
71 |
-
return f"
|
72 |
|
73 |
with gr.Blocks() as demo:
|
74 |
with gr.Column():
|
|
|
75 |
model_name = gr.Textbox(label="Model to use", placeholder="username/my_model")
|
76 |
image_in = gr.Image(source="upload", type="filepath")
|
77 |
-
prompt = gr.Textbox(label="Prompt")
|
|
|
78 |
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=7.5, type="float")
|
79 |
controlnet_conditioning_scale = gr.Slider(label="Controlnet conditioning Scale", minimum=0.1, maximum=0.9, step=0.01, value=0.5, type="float")
|
80 |
seed = gr.Slider(label="seed", minimum=0, maximum=500000, step=1, value=42)
|
@@ -84,7 +99,7 @@ with gr.Blocks() as demo:
|
|
84 |
|
85 |
submit_btn.click(
|
86 |
fn = infer,
|
87 |
-
inputs = [model_name, image_in, prompt, controlnet_conditioning_scale, guidance_scale, seed],
|
88 |
outputs = [result]
|
89 |
)
|
90 |
|
|
|
12 |
import numpy as np
|
13 |
import cv2
|
14 |
|
|
|
|
|
|
|
|
|
|
|
15 |
#vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
generator = torch.Generator(device="cuda")
|
18 |
|
19 |
#pipe.enable_model_cpu_offload()
|
20 |
|
21 |
+
def infer(use_custom_model, model_name, image_in, prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, seed):
|
22 |
+
if use_custom_model:
|
23 |
+
custom_model = model_name
|
24 |
|
25 |
+
# This is where you load your trained weights
|
26 |
+
pipe.load_lora_weights(custom_model, weight_name="pytorch_lora_weights.safetensors", use_auth_token=True)
|
27 |
|
28 |
prompt = prompt
|
29 |
negative_prompt = "extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured"
|
30 |
|
31 |
+
if preprocessor == "canny":
|
32 |
+
|
33 |
+
controlnet = ControlNetModel.from_pretrained(
|
34 |
+
"diffusers/controlnet-canny-sdxl-1.0",
|
35 |
+
torch_dtype=torch.float16
|
36 |
+
)
|
37 |
+
|
38 |
+
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
39 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
40 |
+
controlnet=controlnet,
|
41 |
+
#vae=vae,
|
42 |
+
torch_dtype=torch.float16,
|
43 |
+
variant="fp16",
|
44 |
+
use_safetensors=True
|
45 |
+
)
|
46 |
+
pipe.to("cuda")
|
47 |
+
|
48 |
+
image = load_image(image_in)
|
49 |
+
|
50 |
+
image = np.array(image)
|
51 |
+
image = cv2.Canny(image, 100, 200)
|
52 |
+
image = image[:, :, None]
|
53 |
+
image = np.concatenate([image, image, image], axis=2)
|
54 |
+
image = Image.fromarray(image)
|
55 |
+
|
56 |
+
if use_custom_model:
|
57 |
+
lora_scale= 0.9
|
58 |
+
|
59 |
+
images = pipe(
|
60 |
+
prompt,
|
61 |
+
negative_prompt=negative_prompt,
|
62 |
+
image=image,
|
63 |
+
preprocessor=preprocessor,
|
64 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
65 |
+
guidance_scale = guidance_scale,
|
66 |
+
num_inference_steps=50,
|
67 |
+
generator=generator.manual_seed(seed),
|
68 |
+
cross_attention_kwargs={"scale": lora_scale}
|
69 |
+
).images
|
70 |
+
else:
|
71 |
+
images = pipe(
|
72 |
+
prompt,
|
73 |
+
negative_prompt=negative_prompt,
|
74 |
+
image=image,
|
75 |
+
preprocessor=preprocessor,
|
76 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
77 |
+
guidance_scale = guidance_scale,
|
78 |
+
num_inference_steps=50,
|
79 |
+
generator=generator.manual_seed(seed),
|
80 |
).images
|
81 |
|
82 |
+
images[0].save(f"result.png")
|
83 |
|
84 |
+
return f"result.png"
|
85 |
|
86 |
with gr.Blocks() as demo:
|
87 |
with gr.Column():
|
88 |
+
use_custom_model = gr.Checkbox(label="Use a custom model ?", value=False)
|
89 |
model_name = gr.Textbox(label="Model to use", placeholder="username/my_model")
|
90 |
image_in = gr.Image(source="upload", type="filepath")
|
91 |
+
prompt = gr.Textbox(label="Prompt"),
|
92 |
+
preprocessor = gr.Dropdown(label="Preprocessor", choices=["canny"], value="canny")
|
93 |
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=7.5, type="float")
|
94 |
controlnet_conditioning_scale = gr.Slider(label="Controlnet conditioning Scale", minimum=0.1, maximum=0.9, step=0.01, value=0.5, type="float")
|
95 |
seed = gr.Slider(label="seed", minimum=0, maximum=500000, step=1, value=42)
|
|
|
99 |
|
100 |
submit_btn.click(
|
101 |
fn = infer,
|
102 |
+
inputs = [use_custom_model, model_name, image_in, prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, seed],
|
103 |
outputs = [result]
|
104 |
)
|
105 |
|