import gradio as gr import torch import whisper from diffusers import DiffusionPipeline from transformers import ( WhisperForConditionalGeneration, WhisperProcessor, ) import os MY_SECRET_TOKEN=os.environ.get('HF_TOKEN_SD') device = "cuda" if torch.cuda.is_available() else "cpu" model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small").to(device) processor = WhisperProcessor.from_pretrained("openai/whisper-small") diffuser_pipeline = DiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", custom_pipeline="speech_to_image_diffusion", speech_model=model, speech_processor=processor, use_auth_token=MY_SECRET_TOKEN, revision="fp16", torch_dtype=torch.float16, ) diffuser_pipeline.enable_attention_slicing() diffuser_pipeline = diffuser_pipeline.to(device) #———————————————————————————————————————————— # GRADIO SETUP title = "Speech to Diffusion • Community Pipeline" description = """

This demo can generate an image from an audio sample using pre-trained OpenAI whisper-small and Stable Diffusion.
Community examples consist of both inference and training examples that have been added by the community.
Click here for more information about community pipelines

""" article = """

Community pipeline by Mikail Duzenli • Gradio demo by Sylvain Filoni & Ahsen Khaliq

""" audio_input = gr.Audio(source="microphone", type="filepath") image_output = gr.Image() def speech_to_text(audio_sample): process_audio = whisper.load_audio(audio_sample) output = diffuser_pipeline(process_audio) print(f""" ———————— output: {output} ———————— """) return output.images[0] demo = gr.Interface(fn=speech_to_text, inputs=audio_input, outputs=image_output, title=title, description=description, article=article) demo.launch()