import gradio as gr #import torch #from torch import autocast // only for GPU from PIL import Image import numpy as np from io import BytesIO import os MY_SECRET_TOKEN=os.environ.get('HF_TOKEN_SD') from diffusers import StableDiffusionPipeline from diffusers import StableDiffusionImg2ImgPipeline print("hello sylvain") YOUR_TOKEN=MY_SECRET_TOKEN device="cpu" source_img = gr.Image(source="upload", type="filepath", label="init_img") gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(grid=[2], height="auto") def resize(width,img): basewidth = width img = Image.open(img) wpercent = (basewidth/float(img.size[0])) hsize = int((float(img.size[1])*float(wpercent))) img = img.resize((basewidth,hsize), Image.Resampling.LANCZOS) return img def infer(prompt, source_img): if(source_img != None): pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=YOUR_TOKEN) pipe.to(device) init_image = resize(512,source_img) init_image.save('source.png') images_list = pipe([prompt] * 2, init_image=init_image, strength=0.75) else: pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=YOUR_TOKEN) pipe.to(device) images_list = pipe([prompt] * 2) images = [] safe_image = Image.open(r"unsafe.png") for i, image in enumerate(images_list["sample"]): if(images_list["nsfw_content_detected"][i]): images.append(safe_image) else: images.append(image) return images print("Great sylvain ! Everything is working fine !") title="Stable Diffusion CPU" description="Stable Diffusion example using CPU and HF token.
Warning: Slow process... ~5/10 min inference time. NSFW filter enabled." gr.Interface(fn=infer, inputs=["text", source_img], outputs=gallery,title=title,description=description).launch(enable_queue=True)