Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,489 Bytes
2702839 691af46 bd56df4 691af46 bd56df4 a828900 bd56df4 a828900 bd56df4 a828900 691af46 2702839 691af46 45adfa2 691af46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
import spaces
import PIL
import torch
import subprocess
import gradio as gr
import os
from typing import Optional
from accelerate import Accelerator
from diffusers import (
AutoencoderKL,
StableDiffusionXLControlNetPipeline,
ControlNetModel,
UNet2DConditionModel,
)
from transformers import (
BlipProcessor, BlipForConditionalGeneration,
VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
)
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from clip_interrogator import Interrogator, Config, list_clip_models
from huggingface_hub import snapshot_download
# Download colorization models
os.makedirs("sdxl_light_caption_output", exist_ok=True)
os.makedirs("sdxl_light_custom_caption_output", exist_ok=True)
snapshot_download(
repo_id = 'nickpai/sdxl_light_caption_output',
local_dir = 'sdxl_light_caption_output'
)
snapshot_download(
repo_id = 'nickpai/sdxl_light_custom_caption_output',
local_dir = 'sdxl_light_custom_caption_output'
)
def apply_color(image: PIL.Image.Image, color_map: PIL.Image.Image) -> PIL.Image.Image:
# Convert input images to LAB color space
image_lab = image.convert('LAB')
color_map_lab = color_map.convert('LAB')
# Split LAB channels
l, a , b = image_lab.split()
_, a_map, b_map = color_map_lab.split()
# Merge LAB channels with color map
merged_lab = PIL.Image.merge('LAB', (l, a_map, b_map))
# Convert merged LAB image back to RGB color space
result_rgb = merged_lab.convert('RGB')
return result_rgb
def remove_unlikely_words(prompt: str) -> str:
"""
Removes unlikely words from a prompt.
Args:
prompt: The text prompt to be cleaned.
Returns:
The cleaned prompt with unlikely words removed.
"""
unlikely_words = []
a1_list = [f'{i}s' for i in range(1900, 2000)]
a2_list = [f'{i}' for i in range(1900, 2000)]
a3_list = [f'year {i}' for i in range(1900, 2000)]
a4_list = [f'circa {i}' for i in range(1900, 2000)]
b1_list = [f"{year[0]} {year[1]} {year[2]} {year[3]} s" for year in a1_list]
b2_list = [f"{year[0]} {year[1]} {year[2]} {year[3]}" for year in a1_list]
b3_list = [f"year {year[0]} {year[1]} {year[2]} {year[3]}" for year in a1_list]
b4_list = [f"circa {year[0]} {year[1]} {year[2]} {year[3]}" for year in a1_list]
words_list = [
"black and white,", "black and white", "black & white,", "black & white", "circa",
"balck and white,", "monochrome,", "black-and-white,", "black-and-white photography,",
"black - and - white photography,", "monochrome bw,", "black white,", "black an white,",
"grainy footage,", "grainy footage", "grainy photo,", "grainy photo", "b&w photo",
"back and white", "back and white,", "monochrome contrast", "monochrome", "grainy",
"grainy photograph,", "grainy photograph", "low contrast,", "low contrast", "b & w",
"grainy black-and-white photo,", "bw", "bw,", "grainy black-and-white photo",
"b & w,", "b&w,", "b&w!,", "b&w", "black - and - white,", "bw photo,", "grainy photo,",
"black-and-white photo,", "black-and-white photo", "black - and - white photography",
"b&w photo,", "monochromatic photo,", "grainy monochrome photo,", "monochromatic",
"blurry photo,", "blurry,", "blurry photography,", "monochromatic photo",
"black - and - white photograph,", "black - and - white photograph", "black on white,",
"black on white", "black-and-white", "historical image,", "historical picture,",
"historical photo,", "historical photograph,", "archival photo,", "taken in the early",
"taken in the late", "taken in the", "historic photograph,", "restored,", "restored",
"historical photo", "historical setting,",
"historic photo,", "historic", "desaturated!!,", "desaturated!,", "desaturated,", "desaturated",
"taken in", "shot on leica", "shot on leica sl2", "sl2",
"taken with a leica camera", "taken with a leica camera", "leica sl2", "leica", "setting",
"overcast day", "overcast weather", "slight overcast", "overcast",
"picture taken in", "photo taken in",
", photo", ", photo", ", photo", ", photo", ", photograph",
",,", ",,,", ",,,,", " ,", " ,", " ,", " ,",
]
unlikely_words.extend(a1_list)
unlikely_words.extend(a2_list)
unlikely_words.extend(a3_list)
unlikely_words.extend(a4_list)
unlikely_words.extend(b1_list)
unlikely_words.extend(b2_list)
unlikely_words.extend(b3_list)
unlikely_words.extend(b4_list)
unlikely_words.extend(words_list)
for word in unlikely_words:
prompt = prompt.replace(word, "")
return prompt
def blip_image_captioning(image: PIL.Image.Image,
model_backbone: str,
weight_dtype: type,
device: str,
conditional: bool) -> str:
# https://huggingface.co/Salesforce/blip-image-captioning-large
# https://huggingface.co/Salesforce/blip-image-captioning-base
if weight_dtype == torch.bfloat16: # in case model might not accept bfloat16 data type
weight_dtype = torch.float16
processor = BlipProcessor.from_pretrained(f"Salesforce/{model_backbone}")
model = BlipForConditionalGeneration.from_pretrained(
f"Salesforce/{model_backbone}", torch_dtype=weight_dtype).to(device)
valid_backbones = ["blip-image-captioning-large", "blip-image-captioning-base"]
if model_backbone not in valid_backbones:
raise ValueError(f"Invalid model backbone '{model_backbone}'. \
Valid options are: {', '.join(valid_backbones)}")
if conditional:
text = "a photography of"
inputs = processor(image, text, return_tensors="pt").to(device, weight_dtype)
else:
inputs = processor(image, return_tensors="pt").to(device)
out = model.generate(**inputs)
caption = processor.decode(out[0], skip_special_tokens=True)
return caption
# def vit_gpt2_image_captioning(image: PIL.Image.Image, device: str) -> str:
# # https://huggingface.co/nlpconnect/vit-gpt2-image-captioning
# model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning").to(device)
# feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
# tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
# max_length = 16
# num_beams = 4
# gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
# pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
# pixel_values = pixel_values.to(device)
# output_ids = model.generate(pixel_values, **gen_kwargs)
# preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
# caption = [pred.strip() for pred in preds]
# return caption[0]
# def clip_image_captioning(image: PIL.Image.Image,
# clip_model_name: str,
# device: str) -> str:
# # validate clip model name
# models = list_clip_models()
# if clip_model_name not in models:
# raise ValueError(f"Could not find CLIP model {clip_model_name}! \
# Available models: {models}")
# config = Config(device=device, clip_model_name=clip_model_name)
# config.apply_low_vram_defaults()
# ci = Interrogator(config)
# caption = ci.interrogate(image)
# return caption
# Define a function to process the image with the loaded model
@spaces.GPU
def process_image(image_path: str,
controlnet_model_name_or_path: str,
caption_model_name: str,
positive_prompt: Optional[str],
negative_prompt: Optional[str],
seed: int,
num_inference_steps: int,
mixed_precision: str,
pretrained_model_name_or_path: str,
pretrained_vae_model_name_or_path: Optional[str],
revision: Optional[str],
variant: Optional[str],
repo: str,
ckpt: str,) -> PIL.Image.Image:
# Seed
generator = torch.manual_seed(seed)
# Accelerator Setting
accelerator = Accelerator(
mixed_precision=mixed_precision,
)
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
vae_path = (
pretrained_model_name_or_path
if pretrained_vae_model_name_or_path is None
else pretrained_vae_model_name_or_path
)
vae = AutoencoderKL.from_pretrained(
vae_path,
subfolder="vae" if pretrained_vae_model_name_or_path is None else None,
revision=revision,
variant=variant,
)
unet = UNet2DConditionModel.from_config(
pretrained_model_name_or_path,
subfolder="unet",
revision=revision,
variant=variant,
)
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt)))
# Move vae, unet and text_encoder to device and cast to weight_dtype
# The VAE is in float32 to avoid NaN losses.
if pretrained_vae_model_name_or_path is not None:
vae.to(accelerator.device, dtype=weight_dtype)
else:
vae.to(accelerator.device, dtype=torch.float32)
unet.to(accelerator.device, dtype=weight_dtype)
controlnet = ControlNetModel.from_pretrained(controlnet_model_name_or_path, torch_dtype=weight_dtype)
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
pretrained_model_name_or_path,
vae=vae,
unet=unet,
controlnet=controlnet,
)
pipe.to(accelerator.device, dtype=weight_dtype)
image = PIL.Image.open(image_path)
# Prepare everything with our `accelerator`.
pipe, image = accelerator.prepare(pipe, image)
pipe.safety_checker = None
# Convert image into grayscale
original_size = image.size
control_image = image.convert("L").convert("RGB").resize((512, 512))
# Image captioning
if caption_model_name == "blip-image-captioning-large" or "blip-image-captioning-base":
caption = blip_image_captioning(control_image, caption_model_name,
weight_dtype, accelerator.device, conditional=True)
# elif caption_model_name == "ViT-L-14/openai" or "ViT-H-14/laion2b_s32b_b79k":
# caption = clip_image_captioning(control_image, caption_model_name, accelerator.device)
# elif caption_model_name == "vit-gpt2-image-captioning":
# caption = vit_gpt2_image_captioning(control_image, accelerator.device)
caption = remove_unlikely_words(caption)
# Combine positive prompt and captioning result
prompt = [positive_prompt + ", " + caption]
# Image colorization
image = pipe(prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
generator=generator,
image=control_image).images[0]
# Apply color mapping
result_image = apply_color(control_image, image)
result_image = result_image.resize(original_size)
return result_image, caption
# Define the image gallery based on folder path
def get_image_paths(folder_path):
import os
image_paths = []
for filename in os.listdir(folder_path):
if filename.endswith(".jpg") or filename.endswith(".png"):
image_paths.append([os.path.join(folder_path, filename)])
return image_paths
# Create the Gradio interface
def create_interface():
controlnet_model_dict = {
"sdxl-light-caption-30000": "sdxl_light_caption_output/checkpoint-30000/controlnet",
"sdxl-light-custom-caption-30000": "sdxl_light_custom_caption_output/checkpoint-30000/controlnet",
}
images = get_image_paths("example/legacy_images") # Replace with your folder path
interface = gr.Interface(
fn=process_image,
inputs=[
gr.Image(label="Upload image",
value="example/legacy_images/Hollywood-Sign.jpg",
type='filepath'),
gr.Dropdown(choices=[controlnet_model_dict[key] for key in controlnet_model_dict],
value=controlnet_model_dict["sdxl-light-caption-30000"],
label="Select ControlNet Model"),
gr.Dropdown(choices=["blip-image-captioning-large",
"blip-image-captioning-base",],
value="blip-image-captioning-large",
label="Select Image Captioning Model"),
gr.Textbox(label="Positive Prompt", placeholder="Text for positive prompt"),
gr.Textbox(value="low quality, bad quality, low contrast, black and white, bw, monochrome, grainy, blurry, historical, restored, desaturate",
label="Negative Prompt", placeholder="Text for negative prompt"),
],
outputs=[
gr.Image(label="Colorized image",
value="example/UUColor_results/Hollywood-Sign.jpeg",
format="jpeg"),
gr.Textbox(label="Captioning Result", show_copy_button=True)
],
examples=images,
additional_inputs=[
# gr.Radio(choices=["Original", "Square"], value="Original",
# label="Output resolution"),
# gr.Slider(minimum=128, maximum=512, value=256, step=128,
# label="Height & Width",
# info='Only effect if select "Square" output resolution'),
gr.Slider(0, 1000, 123, label="Seed"),
gr.Radio(choices=[1, 2, 4, 8],
value=8,
label="Inference Steps",
info="1-step, 2-step, 4-step, or 8-step distilled models"),
gr.Radio(choices=["no", "fp16", "bf16"],
value="fp16",
label="Mixed Precision",
info="Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16)."),
gr.Dropdown(choices=["stabilityai/stable-diffusion-xl-base-1.0"],
value="stabilityai/stable-diffusion-xl-base-1.0",
label="Base Model",
info="Path to pretrained model or model identifier from huggingface.co/models."),
gr.Dropdown(choices=["None"],
value=None,
label="VAE Model",
info="Path to an improved VAE to stabilize training. For more details check out: https://github.com/huggingface/diffusers/pull/4038."),
gr.Dropdown(choices=["None"],
value=None,
label="Varient",
info="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16"),
gr.Dropdown(choices=["None"],
value=None,
label="Revision",
info="Revision of pretrained model identifier from huggingface.co/models."),
gr.Dropdown(choices=["ByteDance/SDXL-Lightning"],
value="ByteDance/SDXL-Lightning",
label="Repository",
info="Repository from huggingface.co"),
gr.Dropdown(choices=["sdxl_lightning_1step_unet.safetensors",
"sdxl_lightning_2step_unet.safetensors",
"sdxl_lightning_4step_unet.safetensors",
"sdxl_lightning_8step_unet.safetensors"],
value="sdxl_lightning_8step_unet.safetensors",
label="Checkpoint",
info="Available checkpoints from the repository. Caution! Checkpoint's 'N'step must match with inference steps"),
],
title="Text-Guided Image Colorization",
description="Upload an image and select a model to colorize it.",
cache_examples=False
)
return interface
def main():
# Launch the Gradio interface
interface = create_interface()
interface.launch()
if __name__ == "__main__":
main()
|