Spaces:
Running
on
Zero
Running
on
Zero
# Original ControlNet paper: | |
# "In the training process, we randomly replace 50% text prompts ct with empty strings. | |
# This approach increases ControlNet’s ability to directly recognize semantics | |
# in the input conditioning images (e.g., edges, poses, depth, etc.) as a replacement for the prompt." | |
# https://civitai.com/articles/2078/play-in-control-controlnet-training-setup-guide | |
export MODEL_DIR="stabilityai/stable-diffusion-xl-base-1.0" | |
export REPO="ByteDance/SDXL-Lightning" | |
export INFERENCE_STEP=8 | |
export CKPT="sdxl_lightning_8step_unet.safetensors" # caution!!! ckpt's "N"step must match with inference_step | |
export OUTPUT_DIR="test" | |
export PROJECT_NAME="train_sdxl_light_controlnet" | |
export DATASET="nickpai/coco2017-colorization" | |
export REVISION="custom-caption" # option: main/caption-free/custom-caption | |
export VAL_IMG_NAME="'./000000295478.jpg' './000000122962.jpg' './000000000285.jpg' './000000007991.jpg' './000000018837.jpg' './000000000724.jpg'" | |
export VAL_PROMPT="'Woman walking a small dog behind her.' 'A group of children sitting at a long table eating pizza.' 'A close up picture of a bear face.' 'A plate on a table is filled with carrots and beans.' 'A large truck on a city street with two works sitting on top and one worker climbing in through door.' 'An upside down stop sign by the road.'" | |
# export VAL_PROMPT="'Colorize this image as if it was taken with a color camera' 'Colorize this image' 'Add colors to this image' 'Make this image colorful' 'Colorize this grayscale image' 'Add colors to this image'" | |
accelerate launch train_controlnet_sdxl_light.py \ | |
--pretrained_model_name_or_path=$MODEL_DIR \ | |
--output_dir=$OUTPUT_DIR \ | |
--tracker_project_name=$PROJECT_NAME \ | |
--seed=123123 \ | |
--dataset_name=$DATASET \ | |
--dataset_revision=$REVISION \ | |
--image_column="file_name" \ | |
--conditioning_image_column="file_name" \ | |
--caption_column="captions" \ | |
--max_train_samples=100000 \ | |
--num_validation_images=1 \ | |
--resolution=512 \ | |
--num_train_epochs=5 \ | |
--dataloader_num_workers=8 \ | |
--learning_rate=1e-5 \ | |
--train_batch_size=2 \ | |
--gradient_accumulation_steps=8 \ | |
--proportion_empty_prompts=0 \ | |
--validation_steps=500 \ | |
--checkpointing_steps=2500 \ | |
--mixed_precision="fp16" \ | |
--gradient_checkpointing \ | |
--use_8bit_adam \ | |
--repo=$REPO \ | |
--ckpt=$CKPT \ | |
--num_inference_steps=$INFERENCE_STEP \ | |
--enable_xformers_memory_efficient_attention | |
# --validation_image './000000295478.jpg' './000000122962.jpg' './000000000285.jpg' './000000007991.jpg' './000000018837.jpg' './000000000724.jpg' \ | |
# --validation_prompt 'Woman walking a small dog behind her.' 'A group of children sitting at a long table eating pizza.' 'A close up picture of a bear face.' 'A plate on a table is filled with carrots and beans.' 'A large truck on a city street with two works sitting on top and one worker climbing in through door.' 'An upside down stop sign by the road.' \ | |