import spaces import PIL import torch import subprocess import gradio as gr import os from typing import Optional from accelerate import Accelerator from diffusers import ( AutoencoderKL, StableDiffusionXLControlNetPipeline, ControlNetModel, UNet2DConditionModel, ) from transformers import ( BlipProcessor, BlipForConditionalGeneration, VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer ) from huggingface_hub import hf_hub_download from safetensors.torch import load_file from clip_interrogator import Interrogator, Config, list_clip_models from huggingface_hub import snapshot_download # Download colorization models os.makedirs("sdxl_light_caption_output", exist_ok=True) os.makedirs("sdxl_light_custom_caption_output", exist_ok=True) snapshot_download( repo_id = 'nickpai/sdxl_light_caption_output', local_dir = 'sdxl_light_caption_output' ) snapshot_download( repo_id = 'nickpai/sdxl_light_custom_caption_output', local_dir = 'sdxl_light_custom_caption_output' ) def apply_color(image: PIL.Image.Image, color_map: PIL.Image.Image) -> PIL.Image.Image: # Convert input images to LAB color space image_lab = image.convert('LAB') color_map_lab = color_map.convert('LAB') # Split LAB channels l, a , b = image_lab.split() _, a_map, b_map = color_map_lab.split() # Merge LAB channels with color map merged_lab = PIL.Image.merge('LAB', (l, a_map, b_map)) # Convert merged LAB image back to RGB color space result_rgb = merged_lab.convert('RGB') return result_rgb def remove_unlikely_words(prompt: str) -> str: """ Removes unlikely words from a prompt. Args: prompt: The text prompt to be cleaned. Returns: The cleaned prompt with unlikely words removed. """ unlikely_words = [] a1_list = [f'{i}s' for i in range(1900, 2000)] a2_list = [f'{i}' for i in range(1900, 2000)] a3_list = [f'year {i}' for i in range(1900, 2000)] a4_list = [f'circa {i}' for i in range(1900, 2000)] b1_list = [f"{year[0]} {year[1]} {year[2]} {year[3]} s" for year in a1_list] b2_list = [f"{year[0]} {year[1]} {year[2]} {year[3]}" for year in a1_list] b3_list = [f"year {year[0]} {year[1]} {year[2]} {year[3]}" for year in a1_list] b4_list = [f"circa {year[0]} {year[1]} {year[2]} {year[3]}" for year in a1_list] words_list = [ "black and white,", "black and white", "black & white,", "black & white", "circa", "balck and white,", "monochrome,", "black-and-white,", "black-and-white photography,", "black - and - white photography,", "monochrome bw,", "black white,", "black an white,", "grainy footage,", "grainy footage", "grainy photo,", "grainy photo", "b&w photo", "back and white", "back and white,", "monochrome contrast", "monochrome", "grainy", "grainy photograph,", "grainy photograph", "low contrast,", "low contrast", "b & w", "grainy black-and-white photo,", "bw", "bw,", "grainy black-and-white photo", "b & w,", "b&w,", "b&w!,", "b&w", "black - and - white,", "bw photo,", "grainy photo,", "black-and-white photo,", "black-and-white photo", "black - and - white photography", "b&w photo,", "monochromatic photo,", "grainy monochrome photo,", "monochromatic", "blurry photo,", "blurry,", "blurry photography,", "monochromatic photo", "black - and - white photograph,", "black - and - white photograph", "black on white,", "black on white", "black-and-white", "historical image,", "historical picture,", "historical photo,", "historical photograph,", "archival photo,", "taken in the early", "taken in the late", "taken in the", "historic photograph,", "restored,", "restored", "historical photo", "historical setting,", "historic photo,", "historic", "desaturated!!,", "desaturated!,", "desaturated,", "desaturated", "taken in", "shot on leica", "shot on leica sl2", "sl2", "taken with a leica camera", "taken with a leica camera", "leica sl2", "leica", "setting", "overcast day", "overcast weather", "slight overcast", "overcast", "picture taken in", "photo taken in", ", photo", ", photo", ", photo", ", photo", ", photograph", ",,", ",,,", ",,,,", " ,", " ,", " ,", " ,", ] unlikely_words.extend(a1_list) unlikely_words.extend(a2_list) unlikely_words.extend(a3_list) unlikely_words.extend(a4_list) unlikely_words.extend(b1_list) unlikely_words.extend(b2_list) unlikely_words.extend(b3_list) unlikely_words.extend(b4_list) unlikely_words.extend(words_list) for word in unlikely_words: prompt = prompt.replace(word, "") return prompt def blip_image_captioning(image: PIL.Image.Image, model_backbone: str, weight_dtype: type, device: str, conditional: bool) -> str: # https://huggingface.co/Salesforce/blip-image-captioning-large # https://huggingface.co/Salesforce/blip-image-captioning-base if weight_dtype == torch.bfloat16: # in case model might not accept bfloat16 data type weight_dtype = torch.float16 processor = BlipProcessor.from_pretrained(f"Salesforce/{model_backbone}") model = BlipForConditionalGeneration.from_pretrained( f"Salesforce/{model_backbone}", torch_dtype=weight_dtype).to(device) valid_backbones = ["blip-image-captioning-large", "blip-image-captioning-base"] if model_backbone not in valid_backbones: raise ValueError(f"Invalid model backbone '{model_backbone}'. \ Valid options are: {', '.join(valid_backbones)}") if conditional: text = "a photography of" inputs = processor(image, text, return_tensors="pt").to(device, weight_dtype) else: inputs = processor(image, return_tensors="pt").to(device) out = model.generate(**inputs) caption = processor.decode(out[0], skip_special_tokens=True) return caption # def vit_gpt2_image_captioning(image: PIL.Image.Image, device: str) -> str: # # https://huggingface.co/nlpconnect/vit-gpt2-image-captioning # model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning").to(device) # feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning") # tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning") # max_length = 16 # num_beams = 4 # gen_kwargs = {"max_length": max_length, "num_beams": num_beams} # pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values # pixel_values = pixel_values.to(device) # output_ids = model.generate(pixel_values, **gen_kwargs) # preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) # caption = [pred.strip() for pred in preds] # return caption[0] # def clip_image_captioning(image: PIL.Image.Image, # clip_model_name: str, # device: str) -> str: # # validate clip model name # models = list_clip_models() # if clip_model_name not in models: # raise ValueError(f"Could not find CLIP model {clip_model_name}! \ # Available models: {models}") # config = Config(device=device, clip_model_name=clip_model_name) # config.apply_low_vram_defaults() # ci = Interrogator(config) # caption = ci.interrogate(image) # return caption # Define a function to process the image with the loaded model @spaces.GPU def process_image(image_path: str, controlnet_model_name_or_path: str, caption_model_name: str, positive_prompt: Optional[str], negative_prompt: Optional[str], seed: int, num_inference_steps: int, mixed_precision: str, pretrained_model_name_or_path: str, pretrained_vae_model_name_or_path: Optional[str], revision: Optional[str], variant: Optional[str], repo: str, ckpt: str,) -> PIL.Image.Image: # Seed generator = torch.manual_seed(seed) # Accelerator Setting accelerator = Accelerator( mixed_precision=mixed_precision, ) weight_dtype = torch.float32 if accelerator.mixed_precision == "fp16": weight_dtype = torch.float16 elif accelerator.mixed_precision == "bf16": weight_dtype = torch.bfloat16 vae_path = ( pretrained_model_name_or_path if pretrained_vae_model_name_or_path is None else pretrained_vae_model_name_or_path ) vae = AutoencoderKL.from_pretrained( vae_path, subfolder="vae" if pretrained_vae_model_name_or_path is None else None, revision=revision, variant=variant, ) unet = UNet2DConditionModel.from_config( pretrained_model_name_or_path, subfolder="unet", revision=revision, variant=variant, ) unet.load_state_dict(load_file(hf_hub_download(repo, ckpt))) # Move vae, unet and text_encoder to device and cast to weight_dtype # The VAE is in float32 to avoid NaN losses. if pretrained_vae_model_name_or_path is not None: vae.to(accelerator.device, dtype=weight_dtype) else: vae.to(accelerator.device, dtype=torch.float32) unet.to(accelerator.device, dtype=weight_dtype) controlnet = ControlNetModel.from_pretrained(controlnet_model_name_or_path, torch_dtype=weight_dtype) pipe = StableDiffusionXLControlNetPipeline.from_pretrained( pretrained_model_name_or_path, vae=vae, unet=unet, controlnet=controlnet, ) pipe.to(accelerator.device, dtype=weight_dtype) image = PIL.Image.open(image_path) # Prepare everything with our `accelerator`. pipe, image = accelerator.prepare(pipe, image) pipe.safety_checker = None # Convert image into grayscale original_size = image.size control_image = image.convert("L").convert("RGB").resize((512, 512)) # Image captioning if caption_model_name == "blip-image-captioning-large" or "blip-image-captioning-base": caption = blip_image_captioning(control_image, caption_model_name, weight_dtype, accelerator.device, conditional=True) # elif caption_model_name == "ViT-L-14/openai" or "ViT-H-14/laion2b_s32b_b79k": # caption = clip_image_captioning(control_image, caption_model_name, accelerator.device) # elif caption_model_name == "vit-gpt2-image-captioning": # caption = vit_gpt2_image_captioning(control_image, accelerator.device) caption = remove_unlikely_words(caption) # Combine positive prompt and captioning result prompt = [positive_prompt + ", " + caption] # Image colorization image = pipe(prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=num_inference_steps, generator=generator, image=control_image).images[0] # Apply color mapping result_image = apply_color(control_image, image) result_image = result_image.resize(original_size) return result_image, caption # Define the image gallery based on folder path def get_image_paths(folder_path): import os image_paths = [] for filename in os.listdir(folder_path): if filename.endswith(".jpg") or filename.endswith(".png"): image_paths.append([os.path.join(folder_path, filename)]) return image_paths # Create the Gradio interface def create_interface(): controlnet_model_dict = { "sdxl-light-caption-30000": "sdxl_light_caption_output/checkpoint-30000/controlnet", "sdxl-light-custom-caption-30000": "sdxl_light_custom_caption_output/checkpoint-30000/controlnet", } images = get_image_paths("example/legacy_images") # Replace with your folder path interface = gr.Interface( fn=process_image, inputs=[ gr.Image(label="Upload image", value="example/legacy_images/Hollywood-Sign.jpg", type='filepath'), gr.Dropdown(choices=[controlnet_model_dict[key] for key in controlnet_model_dict], value=controlnet_model_dict["sdxl-light-caption-30000"], label="Select ControlNet Model"), gr.Dropdown(choices=["blip-image-captioning-large", "blip-image-captioning-base",], value="blip-image-captioning-large", label="Select Image Captioning Model"), gr.Textbox(label="Positive Prompt", placeholder="Text for positive prompt"), gr.Textbox(value="low quality, bad quality, low contrast, black and white, bw, monochrome, grainy, blurry, historical, restored, desaturate", label="Negative Prompt", placeholder="Text for negative prompt"), ], outputs=[ gr.Image(label="Colorized image", value="example/UUColor_results/Hollywood-Sign.jpeg", format="jpeg"), gr.Textbox(label="Captioning Result", show_copy_button=True) ], examples=images, additional_inputs=[ # gr.Radio(choices=["Original", "Square"], value="Original", # label="Output resolution"), # gr.Slider(minimum=128, maximum=512, value=256, step=128, # label="Height & Width", # info='Only effect if select "Square" output resolution'), gr.Slider(0, 1000, 123, label="Seed"), gr.Radio(choices=[1, 2, 4, 8], value=8, label="Inference Steps", info="1-step, 2-step, 4-step, or 8-step distilled models"), gr.Radio(choices=["no", "fp16", "bf16"], value="fp16", label="Mixed Precision", info="Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16)."), gr.Dropdown(choices=["stabilityai/stable-diffusion-xl-base-1.0"], value="stabilityai/stable-diffusion-xl-base-1.0", label="Base Model", info="Path to pretrained model or model identifier from huggingface.co/models."), gr.Dropdown(choices=["None"], value=None, label="VAE Model", info="Path to an improved VAE to stabilize training. For more details check out: https://github.com/huggingface/diffusers/pull/4038."), gr.Dropdown(choices=["None"], value=None, label="Varient", info="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16"), gr.Dropdown(choices=["None"], value=None, label="Revision", info="Revision of pretrained model identifier from huggingface.co/models."), gr.Dropdown(choices=["ByteDance/SDXL-Lightning"], value="ByteDance/SDXL-Lightning", label="Repository", info="Repository from huggingface.co"), gr.Dropdown(choices=["sdxl_lightning_1step_unet.safetensors", "sdxl_lightning_2step_unet.safetensors", "sdxl_lightning_4step_unet.safetensors", "sdxl_lightning_8step_unet.safetensors"], value="sdxl_lightning_8step_unet.safetensors", label="Checkpoint", info="Available checkpoints from the repository. Caution! Checkpoint's 'N'step must match with inference steps"), ], title="Text-Guided Image Colorization", description="Upload an image and select a model to colorize it.", cache_examples=False ) return interface def main(): # Launch the Gradio interface interface = create_interface() interface.launch() if __name__ == "__main__": main()